a, \(A=x^3+4x^2-2x-2x^2-8x+4-x^3-x^2=x^2-10x+4\)
b, \(A=x^2-10x+4=4\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow x=0;x=10\)
c, \(A+21>0\Leftrightarrow x^2-10x+25>0\Leftrightarrow\left(x-5\right)^2>0\)
mà (x-5)^2 >= 0
=> x - 5 khác 0 <=> x khác 5
a/ \(A=x^3+4x^2-2x-2x^2-8x+4-x^3-x^2=x^2-10x+4\)
b/ \(A=4\Leftrightarrow x^2-10x+4=4\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
c/ \(A>-21\Leftrightarrow x^2-10x+4>-21\Leftrightarrow x^2-10x+25>0\Leftrightarrow\left(x-5\right)^2>0\)
Vậy với mọi giá trị của x thì A > -21
`a)`\(A=\left(x-2\right)\left(x^2+4x-2\right)-x^2\left(x+1\right)\)
\(A=\left(x-2\right)\left(x^2+2x+4+2x-6\right)-x^2\left(x+1\right)\)
\(A=\left(x-2\right)\left(x^2+2x+4\right)+2\left(x-2\right)\left(x-3\right)-x^2\left(x+1\right)\)
\(A=x^3-8+2x^2-10x+12-x^3-x^2\)
\(A=-x^2-10x+4\)
`b)`\(A=4\)
\(\Leftrightarrow-x^2-10x+4=4\)
\(\Leftrightarrow x^2+10x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
`c)`\(A>-21\)
\(\Leftrightarrow-x^2-10x+4>-21\)
\(\Leftrightarrow-x^2-10x+25>0\)
\(\Leftrightarrow x^2+10x-25< 0\)
\(\Leftrightarrow\left(x+5\right)^2-50< 0\) ( luôn đúng )
Vậy \(S=\left\{x|x\in R\right\}\)