Bài 3: Những hằng đẳng thức đáng nhớ

NT

Bài 13: Biết \(a\ne-b;b\ne-c;c\ne-a\). CMR:

\(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\)

AH
25 tháng 2 2020 lúc 21:43

Lời giải:

\(\text{VT}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}=\left(\frac{b}{b+c}-\frac{b}{a+b}\right)+\left(\frac{c}{c+a}-\frac{c}{c+b}\right)+\left(\frac{a}{a+b}-\frac{a}{a+c}\right)\)

\(=\frac{b(a-c)}{(b+c)(a+b)}+\frac{c(b-a)}{(c+a)(c+b)}+\frac{a(c-b)}{(a+b)(a+c)}\)

\(=\frac{b(a-c)(a+c)+c(b-a)(b+a)+a(c-b)(c+b)}{(a+b)(b+c)(c+a)}=\frac{b(a^2-c^2)+c(b^2-a^2)+a(c^2-b^2)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(*)\)

Và:

\(\text{VP}=\frac{(b^2-c^2)(b+c)+(c^2-a^2)(c+a)+(a^2-b^2)(a+b)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(**)\)

Từ $(*); (**)\Rightarrow $ đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TL
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
KM
Xem chi tiết
HD
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
MD
Xem chi tiết