2xy - (x + y)2
= 2xy - (x2 + 2xy + y2)
= 2xy - x2 - 2xy - y2
= -x2 - y2
= (-x - y)(-x + y)
= (-x - y)(y - x)
\(2xy-\left(x+y\right)^2\)
\(=2xy-x^2-2xy-y^2\)
\(=-x^2-y^2\)
2xy - (x + y)2
= 2xy - (x2 + 2xy + y2)
= 2xy - x2 - 2xy - y2
= -x2 - y2
= (-x - y)(-x + y)
= (-x - y)(y - x)
\(2xy-\left(x+y\right)^2\)
\(=2xy-x^2-2xy-y^2\)
\(=-x^2-y^2\)
Chứng minh (x+y)(x+y)=x^2+2xy+y^2 b(x-y)(x-y)=x^2-2xy+y^2 c(x-z)(x+z)=x^2-z^2
Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y= 1/2
tim x,y thoa man : y^2+2xy-7x-12=0
Rút gọn cái biểu thức sau r tính giá trị biểu thức F=-(2x-y) ^3-x(2x-y)^2-y^3 tại (x-2)^2 +y^2=0 G=(x+y) (x^2-xy+y^2) +3(2x-y) (4x^2+2xy+y^2) tại x+y=2;y=-3 H=(X+3y) (x^2-3xy+9y^2) +(3x-y) (9x^2+3xy+y^2) tại 3x-y=5;x=2
1. Thực hiện phép tính
a. 4x^2.(5x^3-3x+1)
b. (5x^2-4x).(x-2)
c. (x^2-2xy+y^2).(x-y)
2. Phân tích các đa thức sau thành nhân tử
a. 2x^3 y-4x^2 y^2+2xy^3
b. x^2-y^2-3x-3y
3. Tìm x biết
a. 4x^2-4x=0
b. Tìm a để đa thức 2x^3-x^2+x+a chia hết cho đơn thức x-2
b,(5xy-x2+y)2phần5xy2
c,(4x3-3xy2+2xy) (-1phần3x2y)
a, -2 x^3y(2x^2-3y+5yz)
b, (x-2y)(x^2y^2-xy+2y)
c, 2/5xy(x^2.y-5x+10y)
d, 2/3x^2y.(3xy-x^2+y)
e, (x-y)(x^2+xy+y^2)
f, (1/2xy-1).(x^3-2x-6)
Tìm giá trị của biểu thức
A) A=x3-15x2+75x tại x=35
B) B=x3+18x2+108x+16 tại x=-26
C) C=(x2-4y2)(x2-2xy+4y2)(x2+2xy+4y2) tại x= -2 , y=1/2
tính nhân
a, (x-1)(-2x^3+3x+4)=?
b,(-x2 +3)(4x2y+y3)(1-2xy)=