Bài 3: Những hằng đẳng thức đáng nhớ

NH

1) Tìm giá trị lớn nhất của biểu thức:

A=2022-x2-10y2-6xy+4y

2) Cho a và b là 2 số thực thoả mãn a2+b2.

Tìm GTLN của B=b3+4a+2019.

NT
17 tháng 8 2020 lúc 18:01

Bài 1:

Ta có: \(A=2022-x^2-10y^2-6xy+4y\)

\(=-\left(-2022+x^2+10y^2+6xy-4y\right)\)

\(=-\left(x^2+6xy+9y^2+y^2-4y+4-2026\right)\)

\(=-\left[\left(x^2+6xy+9y^2\right)+\left(y^2-4y+4\right)-2026\right]\)

\(=-\left(x+3y\right)^2-\left(y-2\right)^2+2026\)

\(=-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]+2026\)

Ta có: \(\left(x+3y\right)^2\ge0\forall x,y\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x+3y\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Leftrightarrow-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]\le0\forall x,y\)

\(\Leftrightarrow-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]+2026\le2026\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}x+3y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\cdot2=0\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(A=2022-x^2-10y^2-6xy+4y\) là 2026 khi x=-6 và y=2

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
DQ
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết