giá trị của biểu thức A=x5-5x4+5x3-5x2+5x-1 với x=4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị của biểu thức :
a)A=5x5-5x4+5x3-5x2+5x-1 tại x=4
Thay x = 4 vào A ta được:
5.4⁵ - 5.4⁴ + 5.4³ - 5.4² + 5.4 - 1
= 5.1024 - 5.256 + 5.64 - 5.16 + 5.4 - 1
= 5120 - 1280 + 320 - 80 + 20 - 1
= 4099
tính giá trị biểu thứcB=x5-5x4+5x3-5x2+5x1 khi x=4
\(A=x^5-5x^4+5x^3-5x^2+5x\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x\)
\(=x\)
\(=4\)
Tính giá trị của các biểu thức :
a) A = 5x5 - 5x4 + 5x3 - 5x2 + 5x - 1 tại x = 4.
b) B = x2006 – 8.x2005 + 8.x2004 - ...+8x2 - 8x – 5 tại x = 7.
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
b)tương tự
=x^2006-x^2006-x^2005+x^2005+x^2004-...+x^3-x^2-x^2-x-5
=-x-5
=-7-5=-12
Bài 1: Tính giá trị biểu thức
A=x5-5x4+5x3-5x2+5x-1 tại x=4
B= (3+1/117).1/119-4/117.(5+118/119)-5/117.119+8/39
Bài 2: Cho a chia 5 dư 2, b chia 5 dư 3
CMR: ab chia 5 dư 1
Bài 3: Cho dãy số a1=1;a2=3;a3=6;a4=10...
a) Tìm số hạng a100;an
b)CMR: 2 số hạng liên tiếp bằng số chính phương
1)Ta có:x=4=>x+1=5(1)
Mặt khác:A=x5-5x4+5x3-5x2+5x-1(2)
Thay (1) vào (2) ta có:
A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-1
=>A=x5-x5-x4+x4+x3-x3-x2+x2+x-1
=>A=x-1=4-1=3
2)Vì a:5 dư 2,b:5 dư 3 nên:
Đặt:a=5x+2;b=5y+3
Khi đó:ab=(5x+2)(5y+3)=25xy+10y+15x+6
=5(5xy+2y+3x+1)+1
Vì 5(5xy+2y+3x+1)\(⋮\)5 nên =>5(5xy+2y+3x+1)+1:5 dư 1 hay ab:5 dư 1
Vậy ab:5 dư 1
3)
a)Nhận xét:
a1=1
a2=1+2=3
a3=1+2+3=6
a4=1+2+3+4=10
Khi đó:a100=1+2+3+...+100=\(\dfrac{100.101}{2}\)=5050
an=1+2+3+...+n=\(\dfrac{n\left(n+1\right)}{2}\)
b)Gọi 2 số hạng liên tiếp là n-1;n
=>an-1=1+2+3+...+(n-1)=\(\dfrac{\left(n-1\right)n}{2}\)
=>an=\(\dfrac{\left(n+1\right)n}{2}\)(ở câu a)
Khi đó:tổng 2 số hạng liên tiếp là an+an-1 là:
an+an-1=\(\dfrac{n\left(n+1\right)+n\left(n-1\right)}{2}\)=\(\dfrac{2n.n}{2}\)
=\(\dfrac{2n^2}{2}\)=n2 là số chính phương
Vậy tổng 2 số hạng liên tiếp là số chính phương
Giá trị của biểu thức A= 3x5-3x4+5x3-x2+5x+2 tại x =-1
\(A=3x^5-3x^4+5x^3-x^2+5x+2\)
\(\text{Thay x=-1 vào biểu thức A,ta được:}\)
\(A=3.\left(-1\right)^5-3.\left(-1\right)^4+5.\left(-1\right)^3-\left(-1\right)^2+5.\left(-1\right)+2\)
\(A=3.\left(-1\right)-3.1+5.\left(-1\right)-1+5.\left(-1\right)+2\)
\(A=\left(-3\right)-3+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-6\right)+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-11\right)-1+\left(-5\right)+2\)
\(A=\left(-12\right)+\left(-5\right)+2\)
\(A=\left(-17\right)+2=-15\)
Thay x=-1 vào A ta có:
A= 3x5-3x4+5x3-x2+5x+2
= 3.(-1)5-3.(-1)4+5.(-1)3-(-1)2+5.(-1)+2
= 3.(-1)-3.1+5.(-1)-1+(-5)+2
= -3-3-5-1-5+2
=-15
Gía trị lớn nhất của hàm số y = x 5 - 5 x 4 + 5 x 3 + 1 trên đoạn [-1;2] bằng
A. 2
B. 65
C. -7
D. -10
Bài 1: M = 5x3 + (x-1)2- 5x(x2-7x+3)+(2-9x)(4x-1)
chứng minh rằng giá trị biểu thức không phụ thuộc vào giá trị của biến
Bài 2: Tìm x , biết
a) x(x-9)- x+9=0
b) x3 + 64 + (x+4) (x-16)=0
mn giúp tớ với
2:
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
bài 2 :
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
Cho 5x = 4 hãy tính giá trị của biểu thức T = 25 x - 5 2 - x + 5 x 2
A. T = 14
B. T = 47/4
C. T = 118
D. T = 6
a.P=(5x2-2xy+y2)-(x2+y2)-(4x2-5xy+1)
b. chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2-5x+4)(2x+3)-(2x2-x-10)(x-3)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
cho hai đa thức:
A(x) = x5 – 3x2 + 7x4 – 9x3 + x2 – ¼ x
B(x) = 5x4 – x5 + x2 – 2x3 +3x2 – ¼
a, thu gọn và sắp xếp đa thức trên lũy thừ giảm dần của 1 biến
b, tính f(x) + A(x) + B(x); g(x) = A(x) – B(x)
c, tính giá trị của đa thức g(x) tại x = -1
b)
Sửa đề: f(x)=A(x)+B(x)
Ta có: f(x)=A(x)+B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) Ta có: G(x)=A(x)-B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x+x^5-5x^4+2x^3-4x^2+\dfrac{1}{4}\)
\(=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)