Những câu hỏi liên quan
MN
Xem chi tiết
NT
13 tháng 8 2021 lúc 20:28

ĐKXĐ: mọi \(x\)

Ta có \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(\Leftrightarrow\left(x+4\right)\sqrt{x^2+7}-x^2-4x-7=0\)

\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-x^2-4x+4x-7+16=0\) ( thêm bớt )

\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\dfrac{x^2-9}{\sqrt{x^2+7}+4}-\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{x+4}{\sqrt{x^2+7}+4}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\\dfrac{x+4}{\sqrt{x^2+7}+4}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\dfrac{x+4}{\sqrt{x^2+7}+4}=1\left(\text{*}\right)\end{matrix}\right.\)

Giải (*), ta được phương trình

\(\left(\text{*}\right)\Leftrightarrow x+4=\sqrt{x^2+7}+4\)

\(\Leftrightarrow\sqrt{x^2+7}=x\)

\(\Leftrightarrow x^2+7=x^2\)

\(\Leftrightarrow7=0\) ( vô lý )

Suy ra phương trình (*) vô nghiệm 

Vậy \(S=\left\{\pm3\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 7 2019 lúc 2:46

Bình luận (0)
NL
Xem chi tiết
NT
3 tháng 2 2022 lúc 15:52

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

Bình luận (0)
TU
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
OP
4 tháng 2 2022 lúc 10:20

lớp 8 có pt bậc 2 ak??

Bình luận (5)
HP
4 tháng 2 2022 lúc 10:29

\(m,x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=2\end{matrix}\right.\)

\(n,2x^2+5x-3=0\)

\(\Leftrightarrow2x^2-x+6x-3=0\)

\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
HP
4 tháng 2 2022 lúc 10:32

\(k,x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow2x^2-4x-7x+14=0\)

\(\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

Bình luận (1)
YY
Xem chi tiết
AV
26 tháng 2 2018 lúc 22:56

Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)

Khi đó phương trình trở thành :

\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)

\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)

\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)

+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))

\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại

+) \(a=4\)( thỏa mãn điều kiện a > 0 )  \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)

\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 3 ; -3 }

Tích cho mk nhoa !!!! ~~

Bình luận (0)
KN
15 tháng 4 2020 lúc 17:08

P/S: Không cần đặt ẩn phụ cho phí t/g!

\(ĐK:x\inℝ\)

\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)

\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)

Giải (1) ta thấy vô nghiệm

\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Vậy phương trình có tập nghiệm S = {3;-3}

Bình luận (0)
 Khách vãng lai đã xóa
LK
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Bình luận (0)
H24
Xem chi tiết
HP
17 tháng 9 2021 lúc 20:44

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Bình luận (0)
NT
17 tháng 9 2021 lúc 21:54

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

Bình luận (0)