(2x+5) (3y -13) = 31
xy + 2x + y + 11 = 0
xy -x - y -1 = 0
1/x + 1/y = 1/4
(x+1)(3y-2)=-13
(x-4)(y-7)-2=-11
x+xy+y=9
xy-2x-3y=5
tìm x,y hộ tớ nhé
1)x=6y và |x|-|y|=60
2) |x| +|y| <2
3) (x+1)^2 +(y+1)^2 +(x-y)^2 =2
4) (x-2)(5y+1)=12
5) (8– x)(4y +1) = 20
6) xy = x+y
7) x(y+2)+y =1
8) (x-2)(xy-1)=5
9) (2x+1)(y- 5)=12
10) (x-4)(2y+1)=7
11) (2x +1)(3y – 2) = -33
12) xy +5x- 7y= 35
13) xy +2x-3y= 9
14) xy-2x+5y-12=0
11) (x^2+3/xy)^3
12) (x^2+2/x)^3
13) (3y+x/2)^3
14) (1 1/2xy+1)^3
15) (x^2/2+2/y)^3
16) (x^2+2x)^3
17) (x/5+5)^3
18) (1/y+2x)^3
19) (3x+4)^3
20) (2x+1/x^2)^3
Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3
11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)
12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)
\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)
\(=x^6+6x^3+12+8x^3\)
13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)
\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)
14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)
\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)
\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)
15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)
\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)
\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)
Còn 5 bài cuối áp dụng tương tự như thế :)
lm đC câu nào hay câu đó ạ;-;
Bài 3: Rút gọn biểu thức sau:
4) (3x + y)² + (x−y)²
7) (x-4y)² + (x+4y)
10) (2x+7)² + (−2x-3)²
12) -(x+1)²-(x-1)²
5) -(x+5)²-(x-3)²
8) -(-2x+3)²-(5x-3)²
11)-(2x - y)²-(x+3y)²
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
Bài 3: Tìm x, y €Z sao cho:
a. |x + 25| + |-y + 5| = 0
b. |x - 1| + |x – y + 5|≤ 0
c. |6 – 2x| + |x - 13| = 0
d. |x| + |y + 1| = 0
e. |x| + |y| = 2
f. |x| + |y| = 1
g. x.y = - 28
h. (2x - 1).(4y + 2) = - 42
i. x + xy + y = 9
j. xy – 2x – 3y = 5
k. (5x + 1).(y - 1) = 4
l. xy – 5x + y = 7
giúp mình với chiều mình học rồi
a) |x + 25| + |-y + 5| =0
=> |x + 25| = 0 hoặc |-y + 5| = 0
Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy
Đề bài: Tìm x,y,z biết:
1. | x + 1 | + y mũ 2 + 4y + 4 = 0
2. 4x mũ 2 + 9y mũ 2 + 2 ( 2x - 3y + 1 ) = 0
3. 2x ( x - 1 - y ) + y mũ 2 + 1 = 0
4.x mũ 2 + 5y mũ 2 + 4 ( 1 + y - xy ) = 0
5. | 2x - 1 | + y mũ 2 - y + 1/4 = 0
6. x mũ 2 + y mũ 2 + 4x + 6y + 13 = 0
Các bn giúp mk nhé, mk sẽ tick cho các bn!!!!!!!!!!!!11
1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Tìm x,y thuộc số nguyên
a)(x-1)(y+4)=5
b)(2x+3)(y-2)=11
c)xy+2x+y=12
d)xy-x-3y=4
Cần gấp và giải chi tiết
cảm ơn ạk
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`
a) (x-1)(y+4)=5
⇒ x-1 và y+4 ϵ {-1;1;-5;5}
⇒ (x;y) ϵ {(0;-5);(-2;1);(-4;-5);(6;-3)
b) (2x+3)(y-2)=11
⇒ 2x+3 và y-2 ϵ {-1;1;-11;11}
⇒ (x;y) ϵ {(-2;-9);(-1;13);(-7;1);(4;3)}
c) xy+2x+y=12
⇒ x(y+2)+y+2-2=12
⇒ (x+1)(y+2)=14
⇒ x+1 và y+2 ϵ {-1;1;-2;2;-7;7;-14;14}
⇒ (x;y) ϵ {(-2;-16);(0;12);(-3;-9);(1;5);(-8;-4);(6;0);(-15;-3);(13;-1)}
d) xy-x-3y=4
⇒ y(x-3)-(x-3)-3=4
⇒ (x-3)(y-1)=7
⇒ x-3 và y-1 ϵ {-1;1;-7;7}
⇒ (x;y) ϵ {(2;-6);(4;8);(-4;0);(10;2)}
38. Chọn câu sai:
A. 16x^2 (x-y) - x + y= (2x-1) (2x+1)(4x^2+1)(x-y)
B. 16x^3 - 54y^5 = 2(2x -3y) (4x^2 + 6xy + 9y^2)
C. 16x^5 - 54y = 2(2x-3y) (2x + 3y)^2
D. 16x^4 (x-y) - x + y = (4x^2 -1 (4x^2 +1) (x-y)