Những câu hỏi liên quan
PQ
Xem chi tiết
NT
Xem chi tiết
MS
Xem chi tiết
HP
Xem chi tiết
BN
Xem chi tiết
H24
22 tháng 7 2016 lúc 0:42

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

Bình luận (0)
BN
22 tháng 7 2016 lúc 23:32

Cảm ơn bn nha :))

Bình luận (0)
H24
25 tháng 7 2016 lúc 23:14

@ mình rep lúc 12h mà trả lời lúc 11h :))

Bình luận (0)
VT
Xem chi tiết
PL
16 tháng 5 2018 lúc 13:05

Bạn ơi , có sai đề ko z ?

Bình luận (0)
DN
24 tháng 7 2018 lúc 22:17

Ta co :

\(B=y^2-2y\left(1-y\right)+1-2y+y^2+y^2-8y+16+x^2+2x+1+2002\)

B=\(\left(y-1+y\right)^2+\left(y-4\right)^2+(x+1)^2+2002\)

Vi \(\left(2y-1\right)^2;\left(y-4\right)^2;\left(x+1\right)^2\) luon lon hon hoac bang 0 nen

ta co : minB=2002

Bình luận (0)
HK
Xem chi tiết
NT
6 tháng 1 2023 lúc 0:59

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

Bình luận (0)
H24
Xem chi tiết
DL
27 tháng 6 2016 lúc 9:54

\(VT=x^2+y^2+1+2xy+2x+2y+x^2=\left(x+y+1\right)^2+x^2\ge0\forall x;y\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}x=0\\x+y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Bình luận (0)
PT
Xem chi tiết
JQ
22 tháng 8 2016 lúc 14:42

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

Bình luận (0)