cho a,b,c>0
chứng minh: m=a/(a+b) + b/(b+c) + c/(c+a) không phải số nguyên
Cho ba số a; b; c thoả mãn 0
Chứng minh: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}< \dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)
đb bị thiếu nhá bn, mik bổ sung ns sẽ thành: thỏa mãn a\(\le b\le c\)
Ta có \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\le\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)
bn tự chuyển vế quy đồng, sau đó ghép cặp nha
\(\dfrac{a^2\left(c-b\right)+b^2\left(a-c\right)+c^2\left(b-a\right)}{abc}\)
\(\dfrac{a^2\left(c-b\right)-b^2\left(a-c\right)+c^2\left(b-a\right)}{abc}\)
\(\dfrac{a^2\left(c-b\right)-b^2\left(c-b+b-a\right)+c^2\left(b-a\right)}{abc}\le0\)
\(\dfrac{a^2\left(c-b\right)-b^2\left(c-b\right)-b^2\left(b-a\right)+c^2\left(b-a\right)}{abc}0\le\)
\(\dfrac{\left(a-c\right)\left(a+b\right)\left(c-b\right)-\left(b-c\right)\left(b+c\right)\left(b-a\right)}{abc}\le0\)
\(\dfrac{\left(a-b\right)\left(c-b\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{abc}\le0\)
\(\dfrac{\left(a-b\right)\left(c-b\right)\left(a-c\right)}{abc}\le0\)
Vì: \(0< a\le b\le c\) nên a-b <0; \(c-b\ge0\) \(a-c\le0\)
=>(a-b)(c-b)(a-c) \(\le\) 0 =>\(\dfrac{\left(a-b\right)\left(c-b\right)\left(a-c\right)}{abc}\le0\) ( đpcm)
Tích mình nhá, các bạn CTV hoặc thầy cô có thể kiểm tra lại xem em có làm đúng ko nhá ( đánh máy vội nên sẽ bị sai vài chỗ nên bn nhớ để ý nha )
Cho a,b,c>0 Chứng minh rằng
M=(a/a+b) + (b/b+c) + (c/c+a) Không phải là số nguyên
Dễ ý
Nếu a,b,c > 0
--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi
Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((
Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((
\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Vậy M>1 (1) (Đề sai )
b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)
\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=>M<2 (2)
+)Từ (1) và (2)
=>M không phải là ssoos nguyên
Chúc bạn học tốt
Cho biểu thức M= a/(a+b+c)+b/(a+b+d)+c/(b+c+d)+d/(a+c+d). Chứng minh rằng với mọi a,b,c,d nguyên dương thì M có giá trị không phải là 1 số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Cho a,b,c,d là bốn số nguyên dương, chứng minh a/b+c+d + b/a+c+d + c/a+b+d + d/a+b+c không phải là số nguyên (chứng minh nó bé hơn hai thôi cũng được)
* Cho a,b,c≥0
Chứng minh rằng a+b+c≥\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
$a+b+c \ge \sqrt{ab}+\sqrt{bc}+\sqrt{ca}$
$\Leftrightarrow 2a+2b+2c \ge 2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}$
$\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a \ge 0$
$\Leftrightarrow (\sqrt{a}-\sqrt{b})^2+(\sqrt{c}-\sqrt{b})^2+(\sqrt{a}-\sqrt{c})^2 \ge 0$ luôn đúng với $a,b,c \ge 0$
Dấu "=" xảy ra khi a=b=c
Ta có: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)(luôn đúng với mọi a,b,c không âm)
Áp dụng bất đẳng thức Cauchy ta có:
\(\sqrt{ab}\le\dfrac{a+b}{2};\sqrt{bc}\le\dfrac{b+c}{2};\sqrt{ca}\le\dfrac{c+a}{2}\)
Cộng vế với vế ta được:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{a+b+b+c+c+a}{2}\)\(=\dfrac{2\left(a+b+c\right)}{2}=a+b+c\)
Cho a,b,c là các số nguyên dương thỏa mãn A = (a/a+b)+(b/b+c)+(c/c+d)
chứng minh A không phải là số nguyên
CAC BAN GIÚP MINH CACH LAM NHE
CM 1 < A < 2
=> A không phải số nguển
cho a,b,c >0
chứng minh rằng
\(\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{a^2+c^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\ge\dfrac{a+b+c}{\sqrt{2}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
\(\Rightarrow VT=\dfrac{y^2+z^2-x^2}{2x}+\dfrac{x^2+z^2-y^2}{2y}+\dfrac{x^2+y^2-z^2}{2z}\)
\(VT\ge\dfrac{\left(y+z\right)^2}{4x}+\dfrac{\left(x+z\right)^2}{4y}+\dfrac{\left(x+y\right)^2}{4z}-\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}-\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{\dfrac{1}{2}\left(a+b\right)^2}+\sqrt{\dfrac{1}{2}\left(b+c\right)^2}+\sqrt{\dfrac{1}{2}\left(c+a\right)^2}\right)\)
\(VT\ge\dfrac{a+b+c}{\sqrt{2}}\) (đpcm)