Những câu hỏi liên quan
CB
Xem chi tiết
NQ
4 tháng 8 2015 lúc 12:43

Bạn tính ra rồi lấy tử rồi chứng minh        

Bình luận (0)
NQ
Xem chi tiết
NT
24 tháng 3 2021 lúc 20:46

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

Bình luận (0)
NT
24 tháng 3 2021 lúc 22:13

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)

Bình luận (0)
LP
Xem chi tiết

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.

tích nha Thanh Thảo Michiko_BGSnhóm nữ năng động
 

Bình luận (0)
SG
26 tháng 5 2016 lúc 15:45

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.
 

Bình luận (0)
NN
26 tháng 5 2016 lúc 15:53

m/n = 49/20 mà đây là phân số tối giản nên m chia hết cho 49 vì m là số nguyên suy ra m chia hết cho 7

Bình luận (0)
PA
Xem chi tiết
HN
15 tháng 1 2017 lúc 20:58

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

Bình luận (0)
H24
Xem chi tiết
NV
Xem chi tiết
H24
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bình luận (0)
VD
Xem chi tiết
HB
Xem chi tiết
DA
Xem chi tiết