cho x+y=2.cmr xy<1(tìm gtln của A<xy)
Cho xy>0 tm:\(x^2>2;y^2>2\)
CMR:\(x^4-x^3y+x^2y^2-xy^3+y^4\text{ }\text{ }\)≥ \(x^2+y^2\)
Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.
Lời giải:
Ta có:
$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$
$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$
Mà:
$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$
Do đó: $\text{VT}> x^2+y^2$ (đpcm)
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Cho x+y=2.CMR 2+xy/2-xy nhỏ hơn hoặc bằng 3
Dùng kiến thức lớp 8 để giải:
\(x+y=2\Rightarrow y=2-x\)
Ta có BĐT cần chứng minh tương đương:
\(\frac{2+xy}{2-xy}\le3\Leftrightarrow\frac{2+x\left(2-x\right)}{2-x\left(2-x\right)}\le3\)
\(\Leftrightarrow\frac{2+2x-x^2}{2-2x+x^2}-3\le0\Leftrightarrow\frac{2+2x-x^2-6+6x-3x^2}{x^2-2x+2}\le0\)
\(\Leftrightarrow\frac{-4x^2+8x-4}{x^2-2x+1+1}\le0\Leftrightarrow\frac{-4\left(x-1\right)^2}{\left(x-1\right)^2+1}\le0\) (luôn đúng)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(x=y=1\)
cho x^2+y^2=2 va xy=1 cmr x-x^3=y^3-y
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Ta có x + y + z = 1 nên z = 1 - x - y.
Bất đẳng thức cần chứng minh tương đương:
\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).
Áp dụng bất đẳng thức Cauchy - Schwarz:
\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)
\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)
Cộng vế với vế của (1), (2) ta có đpcm.
cho x^2 + y^2+z^2 = xy+xz+yz . cmr x=y=z
x^2+y^2+z^2= xy+yz+zx
=> 2( x^2+y^2+z^2)= 2( xy+xz+yz)
=> 2x^2+2y^2+2z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2-2xy-2xz-2yz= 0
=> x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=0
=> (x-y)^2+(y-z)^2+(z-x)^2 =0
ta thấy (x-y)^2>= 0
(z-x)^2>=0
(y-z)^2>=0
nên (x-y)^2+(y-z)^2+(z-x)^2 >=0
dấu bằng xảy ra khi và chỉ khi
x-y=0 => x=y
y-z=0=> y=z
z-x=0 => z=x
=> x=y=z
Cho x+y=2. CMR:\(\frac{2+xy}{2-xy}\le3\)
Cho x+y=2. CMR: \(\frac{2+xy}{2-xy}\le3\)
áp dụng hệ quả bđt côsi xy≤ \(\left(\frac{x+y}{2}\right)^2\) =\(\left(\frac{2}{2}\right)^2\)=1
⇒\(\frac{2+xy}{2-xy}\) ≤\(\frac{2+1}{2-1}\) = 3
dấu =xảy ra khi x=y=1
Cho x+y=2. CMR:\(\frac{2+xy}{2-xy}\le3\)