Những câu hỏi liên quan
PD
Xem chi tiết
KS
6 tháng 10 2019 lúc 16:35

 a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
DN
Xem chi tiết
KS
27 tháng 10 2019 lúc 7:48

\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

CMTT :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2.}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

CMTT : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
JD
27 tháng 10 2019 lúc 7:52

\(a+b+c+ab+ac+bc=6abc\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{cases}}\) \(\Rightarrow x+y+z+xy+xz+yz=6\)

Cần chứng minh \(P=x^2+y^2+z^2\ge3\)

Ta có BĐT quen thuộc : 

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế : 

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\) 

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
27 tháng 10 2019 lúc 7:52

Từ \(a+b+c+ab+bc+ac=6\left(1\right)\)

Vì a,b,c dương nên ta chia hai vế của pt (1) cho abc ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=6\)

Ta có

\(\frac{1}{a^2}+1\ge\frac{2}{a}\)

\(\frac{1}{b^2}+1\ge\frac{2}{b}\)

\(\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)

\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

Công theo BĐT ta có

\(3\cdot\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow3\cdot\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1\right)\ge12\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1\ge4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu \("="\)xảy ra \(\Leftrightarrow a+b+c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NC
14 tháng 8 2019 lúc 20:32

§1. Bất đẳng thức

Bình luận (0)
H24
Xem chi tiết
NL
13 tháng 7 2020 lúc 12:24

\(GT\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Ta có:

\(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Bình luận (0)
AJ
Xem chi tiết
NL
20 tháng 10 2019 lúc 13:43

\(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\) ; \(Q=\frac{1}{2}\left(ab+ac+bc\right)\)

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{1}{2}ab\)

Tương tự và cộng lại: \(P\ge a+b+c-Q\Rightarrow P+Q\ge a+b+c\)

Mặt khác \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow a+b+c\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\ge\frac{9}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
LV
Xem chi tiết
TT
4 tháng 9 2020 lúc 16:26

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
4 tháng 9 2020 lúc 16:33

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

Bình luận (0)
 Khách vãng lai đã xóa
PN
4 tháng 9 2020 lúc 16:43

Từ giả thiết \(ab+bc+ca=abc< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)khi đó bài toán quy về :

Biết \(x+y+z=1\)Chứng minh rằng : \(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\ge3\left(x^2+y^2+z^2\right)\)

p/s : bây giờ bài toán đã đơn giản rồi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
5 tháng 4 2020 lúc 20:58

\(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\)\(\Rightarrow x+y+z+xy+yz+zx=6\)

CM \(P=x^2+y^2+z^2\ge3\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

Cộng vế với vế

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Vậy dấu "=" xảy ra khi \(x=y=z=1\) hoặc \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
5 tháng 4 2020 lúc 21:02

\(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Ta lại có:

\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1-3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}-3\)

\(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\ge\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

Cộng vế với vế:

\(\frac{3}{a^2}+\frac{3}{b^2}+\frac{3}{c^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)-3\)

\(\Leftrightarrow3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge6.2-3=9\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết