a) 5x^2-20
b)x^2-20x+100-4y^2
kết quả phép chia (25x^5y - 20x^3y^2 - 5x^3y) : 5x^3y là:
A.5x^2y - 4y - x B.5x^2 + 4y C. 5x^2 - 4y D.5x^2 - 4y - 1
bài 1 phân tích đa thức thành nhân tử
a)3x(x-7)+2xy-14y
b)9(2x-5)^2+15x-6x^2
c)6x^2 -12x+6
d)-20x^2+60xy-45y^2
e)2xy^3-16x^4
f)3x^4-48
g)x^2-z^2+4xy+4y^2
h)x^2-z^2+2xy-6zt+y^2-9t^2
baif2 pt đa thức thanhhf nhân tử
a)x^2-12x+20
b)2x^2-x-15
c)x^3-x^2+x-1
d)2x^3-5x-6
e)4y^4+1
f)x^7+x^5+x^3
g)(x^2+x)^2-5(x^2+x)+6
h)(x^2+2x)^2-2(x+1)^2-1
i)x^2+4xy+4y^2-4(x+2y)+3
j)x(x+1)(x+2)(x+3)-3
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
Phân tích đa thức thành nhân tử.
a, 15x^2 - 60
B, x^2 - 2xy - 25 + y^2
C, 36x^2 - y^2 + 10x + 25
D, x^2 - a^2 + 4xy + 2ab + 4y^2 - b^2
e, 4a^2 -2x - x^2 -1
G, 20x^4y^2 - 20x^3y^3 + 5x^2y^4
F, 101a^2 -50a + 625
GiÚp mình nhâ. Gấp lắm. Chiều mình đi hk r :((
a,15x^2-60=15x^2-15*4=15(x^2-4)
b,=(x^2+2xy+y^2)-25=(x+y)^2-5^2=[(x-y)+5][(x-y)-5]
xog 2 phần
Mình cg cần đáp án mấy bài này. Ai giúp vs ah :))
Phân tích
a,A=100x^2+20x+1
b, B=5x^2+13x+6
c,C=8x^2-14x+3
d,D=x^4+4y^4
e,E=x^4+x^2+1
Câu 1.Tính nhân 4x(x\(^2\)− 5x + 3).
A. 4x\(^3\)− 20x\(^2\) + 12x
B. 4x\(^3\)− 5x\(^2\)− 12x
C. 4x\(^2\)− 20x + 12
D. x\(^2\)− 5x + 12.
\(4x\left(x^2-5x+3\right)=4x^3-20x^2+12x\)
=> Chọn A
Tính Giá trị của biểu thức sau theo cách hợp lý
a) A= x^5-5x^4+5x^3-5x^2+5X-1
Với x=4
b) B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3
Với x=21
a) Thay x = 4 vào biểu thức A :
A = 45 - 5.44+ 5.43 - 5.42 + 5.4 -1
= 3
b) Thay x = 21 vào B :
B = 216 - 20.215 - 20.214 -20.213 - 20.212 - 20.21+3
=24
a) (15x^3y^5 - 20x^4y^4 - 15x^3y^3) : (-5x^3y^2)
b) (x+5)^2n : (x+5)^2n-3 (với n >= 2)
c) [3(a-b)^5 + 4(b-a)^2 - 5(b-a)] : 5(a-b)
rút gọn và tính giá trị biểu thức
c)P=[(15x^5y³-10x³y²+20x^4y^4)] :(5x²y²)tại x=-1 và y=2
\(P=\dfrac{15x^5y^3-10x^3y^2+20x^4y^4}{5x^2y^2}\)
\(=\dfrac{15x^5y^3}{5x^2y^2}-\dfrac{10x^3y^2}{5x^2y^2}+\dfrac{20x^4y^4}{5x^2y^2}\)
\(=3x^3y-2x+4x^2y^2\)
Khi x=-1 và y=2 thì \(P=3\cdot\left(-1\right)^3\cdot2-2\cdot\left(-1\right)+4\cdot\left(-1\right)^2\cdot2^2\)
\(=-6+2+16=4+16=20\)