x=y:3 và 16x:2y=128
`Answer:`
`16x^2y^5-2x^2y^5`
`=(16-2)x^2y^5`
`=14x^2y^5`
Thay `x=0,5` và `y=-1` vào biểu thức ta được:
`14.0,5^2.(-1)^5`
`=3,5.(-1)`
`=-3,5`
Thay x = 1/2 và y = -1 ta được
\(14x^2y^5=\dfrac{14.1}{4}.\left(-1\right)=-\dfrac{14}{4}=-\dfrac{7}{2}\)
Giải các phương trình và hệ phương trình sau:
1) \(\dfrac{x-1}{3}=x+1\)
2) \(\sqrt{16x^2+8x+1}-2=x\)
3)\(\left\{{}\begin{matrix}2x+y=17\\x-2y=1\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}=x+1\\ \Leftrightarrow x-1=3x+3\\ \Leftrightarrow3x-x=3+1\\ \Leftrightarrow x=2\)
PT có tập nghiệm S = {2}
\(2,\sqrt{16x^2+8x+1}-2=x\\ \Leftrightarrow\sqrt{\left(4x+1\right)^2}-2=x\\\Leftrightarrow 4x+1-2=x\\ \Leftrightarrow4x-x=2-1\\ \Leftrightarrow x=\dfrac{1}{3}\)
PT có tập nghiệm S = {1/3}
\(3,\left\{{}\begin{matrix}2x+y=17\\x-2y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=17\\2x-4y=2\end{matrix}\right.\\ \Leftrightarrow\left(2x+y\right)-\left(2x-4y\right)=17-2\\ \Leftrightarrow5y=15\\ \Leftrightarrow y=3\\ \Leftrightarrow2x+3=17\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\)
PTHH có tập nghiệm (x; y) là (7; 3)
\(\left\{{}\begin{matrix}x^3+y^3+x^2y+xy^2=32\\x^2y^2\left(x^2+y^2\right)=128\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-2xy\left(x+y\right)=32\\x^2y^2\left[\left(x+y\right)^2-2xy\right]=128\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a\left(a^2-2b\right)=32\\b^2\left(a^2-2b\right)=128\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\\frac{b^2}{a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\a=\frac{b^2}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{b^6}{64}-\frac{b^3}{2}=32\)
\(\Leftrightarrow\frac{1}{64}b^6-\frac{1}{2}b^3-32=0\Rightarrow\left[{}\begin{matrix}b^3=64\\b^3=-32\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=4\Rightarrow a=4\\b=-2\sqrt[3]{4}\Rightarrow a=2\sqrt[3]{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=4\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=2\sqrt[3]{2}\\xy=-2\sqrt[3]{4}\end{matrix}\right.\end{matrix}\right.\) theo Viet đảo x và y là nghiệm:
\(\left[{}\begin{matrix}t^2-4t+4=0\\t^2-2\sqrt[3]{2}t-2\sqrt[3]{4}=0\end{matrix}\right.\) \(\Rightarrow t=...\)
Tìm tâm và bán kính của các đường tròn sau :
a) \(x^2+y^2-2x-2y-2=0\)
b) \(16x^2+16y^2+16x-8y-11=0\)
c) \(x^2+y^2-4x+6y-3=0\)
a) Ta có : -2a = -2 => a = 1
-2b = -2 => b = 1 => I(1; 1)
R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2
b) Tương tự, ta có : I \(\left(-\dfrac{1}{2};\dfrac{1}{4}\right)\); R = 1
c) I(2; -3); R = 4
Cho x>0,y>0,x+y>hoặc=6.CMR:P=(5x^2y+3xy^2+16x+12y)/xy thì > hoặc =3
Cho x>0,y>0,x+y>hoặc=6.CMR:P=(5x^2y+3xy^2+16x+12y)/xy thì > hoặc =3
Phân tích đa thức thành nhân tử
a) x^4 +64 + 16x^2 - 16x^2
b)4x^2 + y^4 + 4x^2y^2 - 4x^2y^2
\(x^4+64+16x^2-16x^2\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
hk tốt
1)\(\begin{cases}x^3-y^3-3y^2=0\\x^2+y^2+4y=x\end{cases}\)
2)\(\begin{cases}15+x^4-y^4=0\\4x^3+2y^3-12x^2+3y^2+16x+2y=0\end{cases}\)
giá trị của biểu thức 16x mũ 2y mũ 5 - 2x mũ 3y mũ 2 tại x = 0,5 và y = -1 là
8x^3-16x^2y+8xy^2
2) 3x^2+6xy+3y^2-3z^2
3)x^3+x^2y-9x-9y
4) x^2-y^2+3x+3y
5) 5a^2+5b^2-5c^2+10ab
tôi biết ông là ai,đừng có mà giỡn như vậy!
Phân tích đa thức thành nhân tử hả?
1) 8x^3-16x^2y+8xy^2
=8x(x^2-2xy+y^2)
=8x(x-y)^2
2) 3x^2+6xy+3y^2-3z^2
=3(x^2+2xy+y^2-z^2)
=3[(x+y)^2-z^2]
=3(x+y+z)(x+y-z)