\(3^x\) + \(\sqrt{4}\) x 3\(^{x+1}\) = \(3^2\) x \(\sqrt{49}\)
giải pt
a) \(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+8-6\sqrt{x-1}}=1-x\)
b) \(\sqrt{x\sqrt{x-1}-2x+2}+\sqrt{\left(x+3\right)\sqrt{x-1}-4x+4}=\sqrt{x-1}\)
c) \(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)
d) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
d/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)
TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
\(\Leftrightarrow x=13\)
TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)
TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)
\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow4=4\) (luôn đúng)
TH4: \(\frac{1}{2}\le x< 1\)
\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)
Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)
Giải phương trình
1) \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
2) \(\sqrt{3}-x=\sqrt[4]{49-4\sqrt{3}.x^3-12\sqrt{3}.x}\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 2\sqrt{x-2}=8$
$\Leftrightarrow \sqrt{x-2}=4$
$\Leftrightarrow x=4^2+2=18$ (tm)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
a,-12:(3/4-5/6)^2
,b,10.\(\sqrt{0.01}.\sqrt{\dfrac{16}{9}+3\sqrt{49}-\dfrac{1}{6}\sqrt{4}}\)
c,x/6=y/3=z/2 và x-2y+4z=8
d,|1/4+x|-1/3=2/5
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
Giải phương trình
1) \(\sqrt{x+1}+\sqrt{2x+3}=\sqrt{3x}+\sqrt{2x-2}\)
2) \(\sqrt{3}-x=\sqrt[4]{49-4\sqrt{3}.x^3-12\sqrt{3}.x}\)
giải giúp mình cần gấp lắm
A=\(\frac{x\sqrt{x}-2x-49}{x+3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+4}-\frac{2\sqrt{x}+8}{\sqrt{x}-1}\)
Rút gọn A
Giải phương trình và bất phương trình:
a) \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}-3=0}\)
b) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) ≤ \(\dfrac{-3}{4}\)
c) \(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
a)\(\sqrt{4x-12}+\sqrt{9x-27}-4\sqrt{x-3}+3-x\)
b) \(\sqrt{25x-25}-3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\)
c) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+18\)
d) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
giúp mk vs
a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)
\(=\sqrt{x-3}+3-x\)
c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)
=>2 căn x-2=18
=>x-2=81
=>x=83
b5: giải pt ;
a, \(\sqrt{49\left(1-2x+x^2\right)}-35=0\)
b, \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)
\(\Leftrightarrow7\left|x-1\right|=35\)
\(\Leftrightarrow\left|x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(\Leftrightarrow x-1=x+\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-6=-1\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25(nhận)