Những câu hỏi liên quan
NS
Xem chi tiết
H24
25 tháng 2 2021 lúc 21:51

`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`

`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`

`<=>-x-1-x+3=x^2+x-x^2+2x-1`

`<=>-2x+2=3x-1`

`<=>5x=3`

`<=>x=3/5`

Vậy `S={3/5}`

`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`

`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`

`<=>x+3-6x+12+6=0`

`<=>-5x+21=0`

`<=>x=21/5`

Vậy `S={21/5}`

Bình luận (0)
NT
25 tháng 2 2021 lúc 22:13

a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)

\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)

Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)

\(\Leftrightarrow3x-1=-2x+2\)

\(\Leftrightarrow3x+2x=2+1\)

\(\Leftrightarrow5x=3\)

hay \(x=\dfrac{3}{5}\)(nhận)

Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)

Bình luận (0)
MN
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:00

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

Bình luận (0)
KG
Xem chi tiết
NT
22 tháng 4 2021 lúc 22:11

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

Bình luận (0)
NT
22 tháng 4 2021 lúc 22:12

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

Bình luận (0)
DH
Xem chi tiết
PA
Xem chi tiết
NT
17 tháng 2 2022 lúc 21:07

a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)

\(\Leftrightarrow x^2+3x-12-10x-30=0\)

\(\Leftrightarrow x^2-7x-42=0\)

\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};1\right\}\)

Bình luận (0)
DA
Xem chi tiết
NL
29 tháng 3 2021 lúc 12:03

ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow x=3\)

Bình luận (0)
HH
Xem chi tiết
H24
14 tháng 2 2022 lúc 19:11

\(\Leftrightarrow\dfrac{2}{-x^2+6x-8}=\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\\ \Leftrightarrow\left\{{}\begin{matrix}2=\left(-x^2+6x-8\right)\left(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\right)\\-x^2+6x-8\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2=-2x^2+4x+2\\-x^2+6x-8\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\-x^2+6x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\-x^2+6x-8\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\-x^2+6x-8\ne\end{matrix}\right.\end{matrix}\right.\\\Rightarrow x=0\)

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
NL
24 tháng 4 2021 lúc 15:49

ĐKXĐ: ...

\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)

\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
LH
Xem chi tiết
NC
23 tháng 7 2021 lúc 12:30

a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)

⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)

Phương trình vô nghiệm

b, x = \(\dfrac{8}{125}\)

Bình luận (0)