Viết phương trình tham số và phương trình chính tắc của đường thẳng MN, biết M(2; 0; −1) và N(4; 3; 1).
Viết phương trình tham số và phương trình chính tắc của đường thẳng (d): x + y - 20 = 0
\(\left(d\right):x+y-20=0.\\ \Rightarrow\overrightarrow{n_d}=\left(1;1\right).\\ \Rightarrow\overrightarrow{u_d}=\left(1;-1\right).\)
\(Cho\) \(x=1.\Rightarrow y=19.\Rightarrow A\left(1;19\right)\in\left(d\right).\)
Ta có \(\left(d\right):\) đi qua \(A\left(1;19\right);\overrightarrow{u_d=}\left(1;-1\right)\) là vecto chỉ phương.
\(\Rightarrow\) Phương trình tham số:
\(\left\{{}\begin{matrix}y=1+t.\\y=19-t.\end{matrix}\right.\)
\(\Rightarrow\) Phương trình chính tắc:
\(\dfrac{x-1}{1}=\dfrac{y-19}{-1}.\\ \Leftrightarrow x-1=-y+19.\)
(d):x+y−20=0.⇒→nd=(1;1).⇒→ud=(1;−1).(d):x+y−20=0.⇒nd→=(1;1).⇒ud→=(1;−1).
ChoCho x=1.⇒y=19.⇒A(1;19)∈(d).x=1.⇒y=19.⇒A(1;19)∈(d).
Ta có (d):(d): đi qua A(1;19);−−−→ud=(1;−1)A(1;19);ud=→(1;−1) là vecto chỉ phương.
⇒⇒ Phương trình tham số:
{y=1+t.y=19−t.{y=1+t.y=19−t.
⇒⇒ Phương trình chính tắc:
HT
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
∆ đi qua hai điểm C và D nên có vecto chỉ phương CD → = (1; 2; 3)
Vậy phương trình tham số của ∆ là
Phương trình chính tắc của ∆ là:
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a → = (3; 3; 1)
Phương trình tham số của đường thẳng Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương
a → = (3; 3; 1) là:
Phương trình chính tắc của ∆ là:
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng ( α ) : 2x – y + z + 9 = 0
∆ ⊥ ( α ) ⇒ a ∆ → = a α → = (2; −1; 1)
Phương trình tham số của ∆ là
Phương trình chính tắc của ∆ là:
Đường thẳng d có phương trình chính tắc x + 1 - 3 = y - 2 1 .Phương trình nào sau đây là phương trình tham số của d?
Đường thẳng d có và đi qua điểm M(-1; 2)
Vậy phương trình tham số của đường thẳng .
Chọn C.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình tham số x = 2 + t y = - 3 t z = - 1 + 5 t . Phương trình chính tắc của đường thẳng d là?
A. x - 2 = y = z + 1
B. x - 2 1 = y - 3 = z + 1 5
C. x + 2 - 1 = y 3 = z - 1 - 5
D. x + 2 1 = y - 3 = z - 1 5
Chọn B.
Đường thẳng d đi qua điểm A(2;0;-1) và có vectơ chỉ phương
Vậy phương trình chính tắc của d là x - 2 1 = y - 3 = z + 1 5
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình tham số x = 2 + t y = 3 - t z = - 1 + 5 t . Phương trình chính tắc của đường thẳng d là?
A. x - 2 = y = z + 1
B. x - 2 1 = y - 3 = z + 1 5
C. x + 2 - 1 = y 3 = z - 1 - 5
D. x + 2 1 = y - 3 = z - 1 5
Chọn B.
Đường thẳng d đi qua điểm A(2;0;-1) và có vectơ chỉ phương
Vậy phương trình chính tắc của d là x - 2 1 = y - 3 = z + 1 5
Viết phương trình chính tắc của đường thẳng D đi qua M( -2; -1) và nhận vectơ u → ( 1 ; 2 ) làm vectơ chỉ phương.
A. 2x- y+ 3= 0
B. x + 2 1 = y + 1 2
C. x = - 2 + 1 t y = - 1 + 2 t
D: x - 1 - 2 = y - 2 - 1
cho tam giác ABC có A(-1;2), B(-2;-1) và C(3;-2)
a) Viết phương trình tham số của đường thẳng đi qua cạnh AC
b) Viết phương trình tham số của đường trung tuyến BN
c) Viết phương trình tham số của đường cao AH
d) Viết phương trình tham số của đường trung trực đoạn AB
e) Viết phương trình tham số của đường thẳng qua A và song song BC
f) Viết phương trình tham số của đường thẳng đi qua M(3;-1) và vuông góc với OB
g) Viết phương trình tham số của đường thẳng đi qua A và song song với
(d): \(\left\{{}\begin{matrix}x=2-5t\\y=1+2t\end{matrix}\right.\)
a: vecto AC=(4;-4)=(1;-1)
Phương trìh tham số là:
x=-1+t và y=2-t
b: Tọa độ N là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{2-2}{2}=0\end{matrix}\right.\)
N(1;0); B(-2;-1)
vecto BN=(3;1)
Phương trình tham số là:
x=1+3t và y=0+t=t
c: vecto BC=(5;-1)
=>vecto AH=(1;5)
Phương trình tham số AH là:
x=-1+t và y=2+5t