Phân tích đa thức sau thành nhân tử (ghi rõ cách làm dùm mình):
5x2-10xy+5y2-20z2
.Phân tích các đa thức sau thành nhân tử:
a) 5x2y- 10xy2
b) x2 + 2xy + y2 - 5x - 5y
c) x2 – 6x + 8
d)5x2 – 10xy + 5y2 – 20z2
\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Phân tích thành nhân tử: 5 x 2 - 10 x y + 5 y 2 - 20 z 2
5 x 2 - 10 x y + 5 y 2 - 20 z 2 = 5 x 2 – 2 x y + y 2 – 4 z 2 = 5 x – y 2 – 2 z 2 = 5 x – y + 2 z x – y – 2 z
5x2 – 10xy + 5y2 – 20z2 = ??? (phân tích thành nhân tử)
\(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 9: Phân tích đa thức thành nhân tử
1, 5x2 – 10xy + 5y2 – 20z2 2, 16x – 5x2 – 3 3, x2 – 5x + 5y – y2 | 4, 3x2 – 6xy + 3y2 – 12z2 5, x2 + 4x + 3 6, (x2 + 1)2 – 4x2 7, x2 – 4x – 5
|
1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)
2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
Phân tích đa thức sau thành nhân tử:
a) x3 + 2x2y + xy2 - 9x b) 5x2 - 10xy + 5y2
a) x3 + 2x2y + xy2 - 9x
= x(x2 + 2xy + y2 - 9)
= x(x+y)2 - 9
= x(x + y - 3) ( x + y + 3).
b) 5x2 - 10xy + 5y2
= 5(x2 - 2xy + y2)
= 5(x-y)2
Có sai thì xin lỗi ạ
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
giải bài toán: cho tam giác MNP, NTlà phân giác của góc N biết MN=4cm, NT=10cm, MP=8cm:TínhTM, TP?
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
a: \(3ab-6a^2b\)
\(=3ab\cdot1-3ab\cdot2a\)
=3ab(1-2a)
b: \(x^3-6x\)
\(=x\cdot x^2-x\cdot6\)
\(=x\left(x^2-6\right)\)
c: \(x^2-y^2-9x+9y\)
\(=\left(x^2-y^2\right)-\left(9x-9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-9\right)\)
d: \(5x^2+10xy+5y^2\)
\(=5\left(x^2+2xy+y^2\right)\)
\(=5\left(x+y\right)^2\)
phân tích các đa thức sau thành nhân tử
a) 5x2 - 10xy + 5y2 - 20z
b) x2 - z2 + y2 - 2xy
c) a3 - ay - a2x + xy
d) x2 + 4x + 3
b: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
d: \(x^2+4x+3=\left(x+3\right)\left(x+1\right)\)
=x4−2x3+2x3−4x2+4x2−8x+7x−14=x4−2x3+2x3−4x2+4x2−8x+7x−14
=(x−2)(x3+2x2+4x+7)
1. Phân tích da thức thành nhân tử5x2-10xy+5y2-20z2
\(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
5x2-10xy+5y2-20z2
=5(x2-2xy+y2-4z2)
=5[(x2-2xy+y2)-(2z)2]
=5[(x-y)2-(2z)2]
=5[(x-y-2z)(x-y+2z)]
chúc bn hc tốt
Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\cdot\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\cdot\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)
\(=5\cdot\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\cdot\left(x-y-2z\right)\left(x-y+2z\right)\)