Tìm tất cả các số nguyên tố x, y sao cho:
x2 - 12y2 = 1
1.Tìm x để:(7x-11)3=25.52+200
2.Tòm các số nguyên tố x;y sao cho:x2+117=y2
Bài 1:
\(\Leftrightarrow\left(7x-11\right)^3=32\cdot25+200=1000\)
=>7x-11=10
=>7x=21
hay x=3
tìm hai số nguyên tố x và y sao cho:x2- 2x+1=6y2- 22x2x+2
tìm các số ng tố x,y sao cho:x2 + 117=y2
thằng tôi cần gấp
có x2+117=y2 ;x2+ y2 =-117
giả sử x,y khác 2
do x,y nguyên tố nên x,y lẻ
=>x2 ,y2 đều lẻ=>x2 -y2 chẳn (vô lý)
do đó trong x,y có 1 số bằng 2
mà x<y=>x=2
có y2=22 +117=121
=>y=11
vậy x=2,y=11
Tìm tất cả các số nguyên tố x, y sao cho: x^2 - 6y^2 = 1
\(x^2-6y^2=1\)
\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)
\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)
Vậy: x=5;y=2
x=5 y=2
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
Tham khảo:
Nhưng có vẻ không đúng yêu cầu đề lắm :<
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)
Tìm tất cả các số nguyên tố x,y sao cho
3.x^2+1= 19.y^2
Bài 1: Tìm x;y nguyên tố biết 59.x + 46.y = 2004
Bài 2: Tìm tất cả các số nguyên tố p sao cho p2 + 14 là số nguyên tố
Ta có 46y là số chẵn với mọi y.
Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)
=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2
=>y=(2004-59.2)/46=41
Tìm tất cả các số nguyên tố x,y sao cho x mũ 2 -6y2=1
Tìm tất cả các số nguyên tố x ,y sao cho : x^2-6y^2=1
x=5
y=2 nha
tìm tất cả các số nguyên tố x;y sao cho
x^2 - 6y^2 - 1 =0