Violympic toán 9

NM

Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)

H24
10 tháng 12 2021 lúc 9:47

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

Bình luận (4)
H24
10 tháng 12 2021 lúc 9:48

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
TT
Xem chi tiết
MD
Xem chi tiết
PP
Xem chi tiết
BG
Xem chi tiết
CN
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
PP
Xem chi tiết