Cho hình vuông ABCD. Gọi M,N là trung điểm BC; DC. BN cắt AM tại H.
CMR : BN vuông góc với AM
Vẽ hình giùm mình nữa nhá, mik sẽ cho 6 tik... ( 2 nick mak )
a) Cho tam giác đều ABC. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CA, AB. Chứng minh MNP là tam giác đều
b) Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)
c) Cho ngũ giác đều ABCD. Gọi M, N, P, Q, R tương ứng là trung điểm của các cạnh BC, CD, EA, AB. Chứng minh MNPQR là ngũ giác đều
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.
Cho hình vuông ABCD. Gọi M là trung điềm AB; N là trung điểm CD.
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh: \(S_{ADM}=\dfrac{1}{4}.S_{ABCD}\)
c) Gọi trung điểm BC là P, AP cắt BN lại I. Chứng minh DI=AB
Cho hình vuông ABCD, gọi M, N, G, H là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh tứ giác MNGH là hình vuông
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm AB, BC. CM cắt DN tại I.
chứng minh CM vuông góc DN
Cho hình vuông ABCD cạnh a. Gọi M là trung điểm AB và N là trung điểm BC. AN và CM cắt nhau tại O. Tính BO.
Tam giác L BCM = tam giác L CDN (2 cạnh góc L = nhau)
=> CDN^ = BCM^
lại có:
BMC^ = DCI^ (so le trong)
=> CID^ =CBM^ = 1v (xét 2 tam giác CDI và CBM)
gọi P là trung điểm của CD và Q là giao điểm của AP và DN
ta có tứ giác AMCP là hình bình hành vì có AM//=CP
=> AP // CM
=> AP L DN
xét tam giác DCI có P là trung điểm của CD và PQ // CI nên Q là trung điểm của DI
vậy AQ là đường cao vùa là trung tuyến của tam giác ADI => tam giác ADI cân tại A => AD=AI
~~~~~~~~~~~~~~~~~~~~ ai đi qua nhớ để lại ~~~~~~~~~~~~~~~~~~
Kéo dài BO cắt AC tại H.Nhận thấy O là trọng tâm tam giác ABC>>>BO=2/3BH.Mà BH dễ tính do tam giác ABC vuông cân.
>>>Tính được BO(nhớ k nha)
Cho hình vuông ABCD. Gọi M và N là trung điểm của BC và DC. Tính cos góc MAN
cos(300) =\(\frac{\sqrt{3}}{2}\)
lik-e nha
Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)
Do ABCD là hình vuông có M, N, P, Q lần lượt là trung điểm của BC, CD, DA, AB nên: AQ = QB = BM = MC= CN = ND = DP = PA
Xét Δ APQ và Δ BQM:
AQ = BM (gt)
∠ A = ∠ B = 90 0
AP = BQ (gt)
Do đó: △ APQ = △ BQM (c.g.c) ⇒ PQ = QM (1)
Xét △ BQM và △ CMN:
BM = CN (gt)
∠ B = ∠ C = 90 0
BQ = CM (gt)
Do đó: △ BQM = △ CMN (c.g.c) ⇒ QM = MN (2)
Xét △ CMN và △ DNP:
CN = DP (gt)
∠ C = ∠ D = 90 0
CM = DN (gt)
Do đó: △ CMN = △ DNP (c.g.c) ⇒ MN = NP (3)
Từ (1), (2) và (3) suy ra: MN = NP = PQ = QM
nên tứ giác MNPQ là hình thoi
Vì AP = AQ nên △ APQ vuông cân tại A
BQ = BM nên △ BMQ vuông cân tại B
⇒ ∠ (AQP) = ∠ (BQM) = 45 0
∠ (AQP) + ∠ (PQM) + ∠ (BQM) = 180 0 (kề bù)
⇒ ∠ (PQM) = 180 0 - ( ∠ (AQP) + ∠ (BQM) )
= 180 0 - ( 45 0 + 45 0 ) = 90 0
Vậy tứ giác MNPQ là hình vuông.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và S A ⊥ A B C D . Gọi M, N, P lần lượt là trung điểm AB, BC và SB. Mệnh đề nào sau đây là sai?
A. M N P / / S A C
B. B D ⊥ M N P
C. Góc giữa SC và BD là 60°
D. B C ⊥ M P
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và S A ⊥ ( A B C D ) . Gọi M,N,P lần lượt là trung điểm AB,BC và SB. Mệnh đề nào sau đây là sai?
A. M N P / / ( S A C )
B. B D ⊥ ( M N P )
C. Góc giữa SC và BD là 60°
D. B C ⊥ M P
Đáp án D
Kẻ Ax//BC, H I ⊥ A x , H K ⊥ S I . Gọi M là trung điểm của AB
⇒ d ( B C , S A ) = d ( B C , ( S A x ) ) = 4 3 d ( H , S A x )
Ta có A I ⊥ ( S H I ) ⇒ A I ⊥ H K ⇒ H K ⊥ ( S A I ) ⇒ d ( H , ( S A x ) ) = H K
Góc giữa SC và (ABC) là góc S C H ^ = 60 °
Ta có H C = C M 2 + M H 2 = a 3 2 2 + a 4 2 = a 13 4
⇒ S H = H C . tan 60 ° = a 39 4
H I = A H . sin 60 ° = 3 4 . a . 3 2 = a . 3 3 8
Ta có H K 2 = H I 2 . S H 2 H I 2 + S H 2 = 351 . a 2 61 ⇒ H K = a 351 61
⇒ d ( B C , S A ) = 4 3 . d H , ( S A x ) = 4 a 351 3 61
Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính cos(MAN).
Kẻ đường cao MH của tam giác cân AMN. Ta có sin ∠ (NAM) = HM/AM và diện tích tam giác AMN là S A M N = 1/2AN.MH = 1/2AN.AM.sin(NAM) = 1/2 A N 2 .sin(NAM) = 1/2( A D 2 + D N 2 ). sin(NAM) = ( 5 a 2 )/2 sin(NAM).