PB

Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)

CT
11 tháng 10 2018 lúc 11:09

Do ABCD là hình vuông có M, N, P, Q lần lượt là trung điểm của BC, CD, DA, AB nên: AQ = QB = BM = MC= CN = ND = DP = PA

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét Δ APQ và Δ BQM:

AQ = BM (gt)

∠ A =  ∠ B = 90 0

AP = BQ (gt)

Do đó: △ APQ =  △  BQM (c.g.c) ⇒ PQ = QM (1)

Xét  △  BQM và  △ CMN:

BM = CN (gt)

∠ B =  ∠ C =  90 0

BQ = CM (gt)

Do đó:  △  BQM =  △ CMN (c.g.c) ⇒ QM = MN (2)

Xét  △  CMN và  △  DNP:

CN = DP (gt)

∠ C =  ∠ D =  90 0

CM = DN (gt)

Do đó:  △ CMN =  △ DNP (c.g.c) ⇒ MN = NP (3)

Từ (1), (2) và (3) suy ra: MN = NP = PQ = QM

nên tứ giác MNPQ là hình thoi

Vì AP = AQ nên  △ APQ vuông cân tại A

BQ = BM nên  △ BMQ vuông cân tại B

⇒  ∠ (AQP) =  ∠ (BQM) = 45 0

∠ (AQP) +  ∠ (PQM) +  ∠ (BQM) =  180 0  (kề bù)

⇒  ∠ (PQM) =  180 0  - ( (AQP) + (BQM) )

            =  180 0 - ( 45 0  + 45 0 ) =  90 0

Vậy tứ giác MNPQ là hình vuông.

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
BU
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
LP
Xem chi tiết
NC
Xem chi tiết
TH
Xem chi tiết