Những câu hỏi liên quan
MA
Xem chi tiết
PH
27 tháng 11 2018 lúc 21:22

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)

Bình luận (0)
H24
Xem chi tiết
TH
14 tháng 10 2018 lúc 11:10

Sai đề.

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 10 2021 lúc 0:21

a: \(\left(abc\right)^2=\dfrac{3}{5}\cdot\dfrac{4}{5}\cdot\dfrac{3}{4}=\dfrac{9}{25}\)

Trường hợp 1: \(abc=\dfrac{3}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\end{matrix}\right.\)

Trường hợp 2: \(abc=\dfrac{-3}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\b=\dfrac{3}{5}:\dfrac{-3}{4}=\dfrac{-4}{5}\\a=\dfrac{3}{5}:\dfrac{-4}{5}=\dfrac{-3}{4}\end{matrix}\right.\)

Bình luận (0)
PL
Xem chi tiết
NN
1 tháng 5 2017 lúc 6:18

C sai. Vì khi phép trừ ở BPT, ta không đổi dấu. (mk không chắc lắm )

Bình luận (0)
TN
Xem chi tiết
PQ
13 tháng 7 2020 lúc 18:26

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
13 tháng 7 2020 lúc 18:42

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
13 tháng 7 2020 lúc 18:46

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge\frac{a}{3}\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+2c\right)^2}\ge\frac{1}{3}a-\frac{2}{27}b-\frac{4}{27}c\)

tương tự rồi cộng lại

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
XT
30 tháng 4 2017 lúc 11:12

A sai vì:

Nếu a=-3 b=2 thì a<b nhưng a2>b

(chứng minh 1 mệnh đề sai chỉ cần đưa ra 1 ví dụ trái mệnh đề)

Bình luận (0)
H24
Xem chi tiết
TC
11 tháng 9 2021 lúc 20:45

undefined

Bình luận (0)
TC
11 tháng 9 2021 lúc 20:48

undefined

Bình luận (0)
H24
Xem chi tiết
VL
Xem chi tiết
BH
17 tháng 1 2017 lúc 16:53

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

Bình luận (0)
LQ
24 tháng 9 2017 lúc 8:43

Minh Quân yêu Thanh Hiền

Bình luận (0)
DY
Xem chi tiết