Những câu hỏi liên quan
LA
Xem chi tiết
NT
30 tháng 10 2023 lúc 22:48

\(2x^3+5c^3=2x^3+5x^3\)

\(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)

\(\dfrac{\left(x^3y^2-2x^2-3x^3+xy^4\right)}{xy^2}\)

\(=\dfrac{xy^2\cdot x^2-x\cdot2x-x\cdot3x^2+xy^2\cdot y^2}{xy^2}\)
\(=x^2-\dfrac{2x}{y^2}-\dfrac{3x^2}{y^2}+y^2\)

Bình luận (0)
PT
Xem chi tiết
NT
21 tháng 10 2021 lúc 20:41

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

Bình luận (1)
NM
Xem chi tiết
NT
9 tháng 1 2023 lúc 22:44

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

Bình luận (0)
MT
Xem chi tiết
DL
Xem chi tiết
SO
17 tháng 10 2018 lúc 21:53

3x^2(5x^2-7x+4)

=15x^4-21x^3+12x^2

xy^2(2x^2y-5xy+y)

=2x^3y^3-5x^2y^3+xy^3

(2x^2-5x)(3x^2-2x+1)

=6x^4-4x^3+2x^2-15x^3+10x^2-5x

=6x^4-19x^3+12x^2-5x

(x-3y)(2xy+y^2+x)

=2x^2y+xy^2+x^2-6xy^2-3y^3-3xy

=-3y^3+2x^2y-5xy^2+x^2-3xy

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 1 2024 lúc 18:57

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)

 

Bình luận (0)
AT
Xem chi tiết
H9
11 tháng 7 2023 lúc 16:14

a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)

\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)

\(=\dfrac{5}{2}x^6y^8\)

Bậc là: \(6+8=14\)

Hệ số: \(\dfrac{5}{2}\)

Biến: \(x^6y^8\)

b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)

\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)

\(=-40x^9y^4z\)

Bậc là: \(9+4=13\)

Hệ số: \(-40\)

Biến: \(x^9y^4z\)

c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)

\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)

\(=14x^6y^8\)

Bậc là: \(6+8=14\)

Hệ số: \(14\)

Biến: \(x^6y^8\)

Bình luận (0)
H24
Xem chi tiết
NM
15 tháng 12 2021 lúc 16:25

\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)

Bình luận (0)
TH
Xem chi tiết