Cho x, y >=0 thoả mãn x+y=1
Tìm min và max của A=x2+y2
cho số thực x;y thỏa mãn x2+y2=1
tìm min, max của: P=2x+y3
Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)
Với mọi số thực x ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)
\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)
\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)
Cho x,y là các số thực thỏa mãn: x2+y2+xy ≤ 1
Tìm max P = x2+2xy
cho x;y thỏa mãn x2+8/x2+y2/8=8 tìm max và min củaB=xy+2024
đúng thì like giúp mik nha bạn. Thx bạn
cho x;yϵR thỏa mãn x2+y2-xy=4 tìm max và min của C=x2+y2
\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)
\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)
\(\Rightarrow x^2+y^2\le8\)
\(C_{max}=8\) khi \(x=y=\pm2\)
\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)
\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)
\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)
Đúng thì like giúp mik nha bạn. Thx bạn
cho x y z là các số thực không âm thỏa mãn x+y+z=1
tìm min max P= √7x+9 + √7y+9 + √7z+9
+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)
\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)
\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)
+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)
\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)
\(=x+y+z+9=10\)
\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)
Cho x,y,z là các số thực dương thoả mãn x2-y2+z2=xy+3yz+zx
Tìm Max P=\(\dfrac{x}{(2y+z)^{2}}+\dfrac{1}{xy(y+2z)}\)
cho x≠0, y≠0 thỏa mãn: (x+y)xy=x2+y2-xy. Tính max A=\(\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:
\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);
\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)
Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2
Vậy Max A = 16
Cho x, y > 0 thoả mãn x2+y2 ≤ x + y
CM: x+3y ≤ 2+√5
\(x^2+y^2\le x+y\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\le\dfrac{1}{2}\)
Áp dụng BĐT Bunhiacopski:
\(\left[1\cdot\left(x-\dfrac{1}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2\right]\le10\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]\le5\)
\(\Leftrightarrow\left(x+3y-2\right)^2\le5\\ \Leftrightarrow x+3y-2\le\sqrt{5}\\ \Leftrightarrow x+3y\le2+\sqrt{5}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{10}\\y=\dfrac{5+3\sqrt{5}}{10}\end{matrix}\right.\)
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)