\(x^2+y^2\le x+y\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\le\dfrac{1}{2}\)
Áp dụng BĐT Bunhiacopski:
\(\left[1\cdot\left(x-\dfrac{1}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2\right]\le10\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]\le5\)
\(\Leftrightarrow\left(x+3y-2\right)^2\le5\\ \Leftrightarrow x+3y-2\le\sqrt{5}\\ \Leftrightarrow x+3y\le2+\sqrt{5}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{10}\\y=\dfrac{5+3\sqrt{5}}{10}\end{matrix}\right.\)