cho x=1+\(\sqrt[3]{2}\) tinh B=x^4-2x^4+x^3-3x^2+1942
cho x=1+\(\sqrt[3]{2}\)
tính B= \(^{x^4-2x^4+x^3-3x^2+1942}\)
cho x=1+\(\sqrt[3]{2}\) tính giá trị B=\(x^5-2x^4+x^3-3x^2+1942\)
a) cho x=\(1+\sqrt[3]{2}\) tính B = \(x^4-2x^5+x^3-3x^2+1942\)
b) cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) tính P =\(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
c) cho x = \(1+\sqrt[3]{2}\)\(+\sqrt[3]{4}\) tính C = \(x^5-4x^4+x^3-x^2-2x+2015\)
1.Cho \(x=1+\sqrt[3]{2}\). Tính giá trị của biểu thức B=\(x^5-2x^4+x^{3^{ }}-3x^{2^{ }}+1942\)
2. Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức P=\(x^5-4x^{4^{ }}+x^3-x^2-2x+2015\)
1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)
\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)
\(B=1945\)
b/ Tương tự:
\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)
\(P=2016\)
1/
A = \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là một số nguyên
2/
a) Cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\). Tính giá trị biểu thức:
P = \(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
b) Cho x = \(1+\sqrt[3]{2}\) . Tính giá trị của biểu thức B = \(x^4-2x^4+x^3-3x^2+1942\)
3/
Rút gọn:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
B = \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
Làm ơn, giúp mik với. Mik đang cần gấp!
Bài 3:
a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
a) \(\sqrt{x-3}-\sqrt{10-x}\)
b) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
c) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-4}}\)
d) \(\dfrac{\sqrt{2x-1}}{3x+2}\)
e) \(\dfrac{-2}{\sqrt{x^2+2x+2}}\)
a) ĐKXĐ: \(3\le x\le10\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ne4\end{matrix}\right.\)
d) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
e) ĐKXĐ: \(x\in R\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
1.Tìm x
a)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{(x-1)(x+3)}=4-2x\)
b)\(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)
\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)
\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
a/ ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:
$a+b+2ab=6-(a^2+b^2)$
$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$
$\Leftrightarrow (a+b)^2+(a+b)-6=0$
$\Leftrightarrow (a+b-2)(a+b+3)=0$
Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$
$\Leftrightarrow a+b=2$
Mà $b^2-a^2=(x+3)-(x-1)=4$
$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$
$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$
$\Leftrightarrow x=1$ (tm)
b/
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{3x-2}=a; \sqrt{x-1}=b(a,b\geq 0)$. Khi đó pt đã cho trở thành:
$a+b=a^2+b^2-6+2ab$
$\Leftrightarrow a^2+b^2+2ab-(a+b)-6=0$
$\Leftrightarrow (a+b)^2-(a+b)-6=0$
$\Leftrightarrow (a+b+2)(a+b-3)=0$
Hiển nhiên $a+b+2>0$ với mọi $a,b\geq 0$
Do đó $a+b-3=0\Leftrightarrow a+b=3$
$\Leftrightarrow b=3-a$.
Ta thấy $a^2-3b^2=1$. Thay $b=3-a$ vô thì:
$a^2-3(3-a)^2=1$
$\Leftrightarrow (a-2)(a-7)=0$
$\Leftrightarrow a=2$ hoặc $a=7$
Vì $a+b=3$ mà $a,b>0$ nên $a,b<3$. Do đó $a=2$
$\Leftrightarrow \sqrt{3x-2}=2$
$\Leftrightarrow x=2$