.chứng minh rằng
1)4x^2-4x+2>0
2)x^2-4x+10>0
4)9x^2+6X+3>0
5)-x^2-2x-3<0
1) (x2-4x+16) (x+4)-x(x+1) (x+2)+3x2=0
2) (8x+2) (1-3x)+(6x-1) (4x-10)=-50
3) (x2+2x+4) (2-x)+x(x-3) (x+4)-x2+24=0
4) (\(\dfrac{x}{2}\)x2+3) (5-6x)+(12x-2) (\(\dfrac{x}{4}\)x4+3)=0
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
3)(x2+2x+4)(2-x)+x(x-3)(x+4)-x2+24=0
\(\Rightarrow\)8-x3+x(x2+4x-3x-12)-x2+24=0
\(\Rightarrow\)8-x3+x3+4x2-3x2-12x-x2+21=0
\(\Rightarrow\)-12x+29=0
\(\Rightarrow\)-12x=-29
\(\Rightarrow\)x=\(\dfrac{-29}{-12}=\dfrac{29}{12}\)
giải phương trình sau
1/ 2x( x+3) - 6 (x-3) =0
2/ 2x^2( 2x+3) +(2x+3) =0
3/ (x-2) (x+1) -(x-2) 4x =0
4/ 2x ( x-5) -3x +15=0
5/ 3x(x+4) -2x-8 =0
6/ x^2 (2x-6) + 2x -6 =0
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
Bài 1: Chứng minh các biểu thức sau không phụ thuộc vào biến x.
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
b/ 9x(2x – 5) – (6x + 2)(3x – 2) + 39x
c/ 4x(2x – 3) + x(x + 2) – 9x(x – 1) + x – 5
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
a) Ta có: \(\left(2x+1\right)\left(4x-3\right)-6x\left(x+5\right)-2x\left(x-7\right)+18x\)
\(=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x\)
\(=-3\)
b) Ta có: \(9x\left(2x-5\right)-\left(6x+2\right)\left(3x-2\right)+39x\)
\(=18x^2-45x-18x^2+12x-6x+4+39x\)
\(=4\)
c) Ta có: \(4x\left(2x-3\right)+x\left(x+2\right)-9x\left(x-1\right)+x-5\)
\(=8x^2-12x+x^2+2x-9x^2+9x+x-5\)
\(=-5\)
Bài 1: tìm x
1, 2x(3x-1)+1-3x=0
2, x\(^2\)(2x-3)+12-8x=0
3, 25(x-1)\(^2\)-4=0
4, 25x\(^2\)-10x+1=0
5, -4x\(^2\)+\(\dfrac{1}{9}\)=0
6, (x-1)\(^3\)=8
7, (2x-1)\(^3\)+27=0
8, 125+\(\dfrac{1}{8}\)(x-1)\(^3\)=0
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
`@` `\text {Ans}`
`\downarrow`
`5,`
`-4x^2 + 1/9 = 0`
`<=> -4x^2 = 0 - 1/9`
`<=> -4x^2 = -1/9`
`<=> 4x^2 = 1/9`
`<=> x^2 = 1/9 \div 4`
`<=> x^2 = 1/36`
`<=> x^2 = (+-1/6)^2`
`<=> x = +-1/36`
Vậy, `S = {1/36; -1/36}`
`6,`
`(x-1)^3 = 8`
`<=> (x-1)^3 = 2^3`
`<=> x-1=2`
`<=> x = 2 + 1`
`<=> x = 3`
Vậy, `S = {3}`
`7,`
`(2x-1)^3 + 27 = 0`
`<=> (2x - 1)^3 = -27`
`<=> (2x-1)^3 = (-3)^3`
`<=> 2x - 1 = -3`
`<=> 2x = -3 + 1`
`<=> 2x = -2`
`<=> x = -1`
Vậy,` S = {-1}`
`8,`
`125 + 1/8(x-1)^3 = 0`
`<=> 1/8(x-1)^3 = - 125`
`<=> (x-1)^3 = -125 \div 1/8`
`<=> (x-1)^3 = -1000`
`<=> (x-1)^3 = (-10)^3`
`<=> x - 1 = - 10`
`<=> x = -10+1`
`<=> x = -9`
Vậy, `S = {-9}.`
1) (3x - 2)(4x + 5) = 0
2) (4x + 2)(x2 + 3) = 0
3) (2x + 7)(x - 3)(5x - 1) = 0
4) x2 - 3x = 0
5) x2 - x = 0
1
(3x-2)(4x+5)=0
⇔ 3x-2=0 -> x= 2/3
⇔ 4x-5=0 x= 5/4
Vậy tập nghiệm S = { 2/3; 5/4}
2, (4x+2)(\(X^2\)+3)=0
⇔ 4x+2=0 -> x= -1/2
\(x^2\)+3=0 -> x= \(\sqrt{3}\); -\(\sqrt{3}\)
Vaayj tập nghiệm S= { -1/2; \(\sqrt{3}\);-\(\sqrt{3}\)}
3)
(2x+7)(x-3)(5x-1)=0
⇔ 2x+7=0 -> x= -7/2
x-3 =0 -> x = 3
5x-1 =0 -> x= 1/5
Vậy tập nghiệm S={ -7/2; 3; 1/5}
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
Chứng minh rằng:
1) A=x^2 + 2x + 2 >0
2) B= -4x^2 + 4x - 2<0
`1)A=x^2+2x+2`
`A=x^2+2x+1=(x+1)^2+1>=1>0(dpcm)`
`2)B=-4x^2+4x-2`
`B=-4x^2+4x-1-1=-(2x-1)^2-1<=-1<0(dpcm)`
1. Ta có \(A=x^2+2x+2=\left(x+1\right)^2+1\)
mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\)
\(\Rightarrow A=x^2+2x+2>0\) ( đpcm )
2. Ta có \(B=-4x^2+4x-2=-\left(4x^2-4x+2\right)=-\left[\left(2x-1\right)^2+1\right]\)
mà \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+1\ge1\Rightarrow-\left[\left(2x-1\right)^2+1\right]\le-1< 0\)
\(\Rightarrow B=-4x^2+4x-2< 0\) ( đpcm )
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Bài 1: Thực hiện phép tính
a) (3x-1)(9x2+3x+1)-4x(x-5)
b) (7x+2)(3-4x)-(x+3)(x2-3x+9)
c) (4x+3)(4x-3)-(2-x)(4+2x+x2)
d) (3x-8)(-5x+6)-(4x+1)(3x-2)
e) (3x-6)4x-2x(3x+5)-4x2
f) (5x-6)(6x-5)-x(3x+10)
Bài 2 : Tính
a) x(x+3)-x2=6
b) 2x(x-5)+x(-2x-1)=6
c) x (x+5)-(x+1)(x-2)=7
d)(3x+4)(6x-3)-(2x+1)(9x-2)=10
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2