Những câu hỏi liên quan
NT
Xem chi tiết
LF
3 tháng 11 2017 lúc 18:15

Áp dụng BĐT AM-GM ta có:

\(A=a+b+\dfrac{1}{a}+\dfrac{1}{b}\)

\(=\left(a+\dfrac{1}{4a}\right)+\left(b+\dfrac{1}{4b}\right)+3\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\)

\(=2\sqrt{a\cdot\dfrac{1}{4a}}+2\sqrt{b\cdot\dfrac{1}{4b}}+3\dfrac{\left(1+1\right)^2}{4\left(a+b\right)}\)

\(\ge2\cdot\dfrac{1}{2}+2\cdot\dfrac{1}{2}+\dfrac{3\cdot4}{4}=5=VP\)

Xảy ra khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 3 2019 lúc 11:54

Dễ thấy các hệ số tương đồng nhau nên có thể biến đổi bđt về dạng sau : 

\(\left(\frac{1}{a^2}+\frac{2a^2}{3}\right)+\left(\frac{1}{b^2}+\frac{2b^2}{3}\right)+\left(\frac{1}{c^2}+\frac{2c^2}{3}\right)\ge5\)

Ta đi chứng minh bđt phụ sau : \(\frac{1}{a^2}+\frac{2a^2}{3}\ge\frac{7}{3}-\frac{2a}{3}\)(1)

\(Bđt\left(1\right)\Leftrightarrow\frac{1}{a^2}+\frac{2a^2}{3}-\frac{7}{3}+\frac{2a}{3}\ge0\)

               \(\Leftrightarrow\frac{3+2a^4-7a^2+2a^3}{3a^2}\ge0\)

              \(\Leftrightarrow\frac{2\left(a^4-2a^2+1\right)+2a^3-3a^2+1}{3a^2}\ge0\)

           \(\Leftrightarrow\frac{2\left(a^2-1\right)^2+2a^2\left(a-1\right)-\left(a^2-1\right)}{3a^2}\ge0\)

         \(\Leftrightarrow\frac{2\left(a-1\right)^2\left(a+1\right)^2+2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)}{3a^2}\ge0\)

       \(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+2a^2-a-1\right]}{3a^2}\ge0\)

     \(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+\left(a-1\right)\left(2a+1\right)\right]}{3a^2}\ge0\)

    \(\Leftrightarrow\frac{\left(a-1\right)^2\left[2\left(a+1\right)^2+2a+1\right]}{3a^2}\ge0\)(Luôn đúng do a > 0 nên [...] > 0)

Dấu "=" <=> a = 1

Thiết lập các bđt còn lại \(\frac{1}{b^2}+\frac{2b^2}{3}\ge\frac{7}{3}-\frac{2b}{3}\)

                                      \(\frac{1}{c^2}+\frac{2c^2}{3}\ge\frac{7}{3}-\frac{2c}{3}\)

Cộng 3 vế của bdtd lại ta được

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge7-\frac{2\left(a+b+c\right)}{3}=7-\frac{2.3}{3}=5\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)
LK
31 tháng 3 2019 lúc 16:12

Tìm điểm rơi a=b=c=1 Min=5

Rồi áp dụng UCT giải

Bình luận (0)
H24
Xem chi tiết
PM
Xem chi tiết
TT
Xem chi tiết
WB
Xem chi tiết
WR
Xem chi tiết
NT
23 tháng 3 2018 lúc 21:01

giả sử a>(=)b>(=)c

Bình luận (0)
DT
Xem chi tiết
FF
Xem chi tiết
H24
16 tháng 1 2019 lúc 19:38

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)
DN
17 tháng 1 2019 lúc 19:41

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

Bình luận (0)
H24
6 tháng 5 2019 lúc 18:55

Thấy mọe rồi,lúc đó t ngốc quá nên làm nhầm.

Bình luận (0)