Những câu hỏi liên quan
DT
Xem chi tiết
ND
Xem chi tiết

TL

Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.

Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.

Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.

Vậy GTLN = 2012/2009.

Bình luận (0)
 Khách vãng lai đã xóa
CB
Xem chi tiết
LL
27 tháng 9 2021 lúc 14:40

\(-x^2-y^2+xy+2x+2y=-\left[x^2-x\left(y+2\right)+\dfrac{1}{4}\left(y+2\right)^2\right]-\left(\dfrac{3}{4}y^2-3y+3\right)+4=-\left(x-\dfrac{1}{2}y-1\right)^2-\left(\dfrac{\sqrt{3}}{2}y-\sqrt{3}\right)^2+4\le4\)

\(max=4\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Bình luận (1)
LN
Xem chi tiết
NM
12 tháng 10 2021 lúc 16:14

\(A=\dfrac{b^2}{b-1}=\dfrac{b^2-1+1}{b-1}=b+1+\dfrac{1}{b-1}=b-1+\dfrac{1}{b-1}+2\)

Áp dụng BĐT cosi cho \(b>0\left(b>1\right)\)

\(A=b-1+\dfrac{1}{b-1}+2\ge2\sqrt{\left(b-1\right)\cdot\dfrac{1}{b-1}}+2=2+2=4\)

Dấu \("="\Leftrightarrow\left(b-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}b-1=1\\b-1=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow b=2\left(tm\right)\)

 

 

Bình luận (0)
NV
Xem chi tiết
NT
30 tháng 7 2023 lúc 21:33

\(\sqrt{x}-2>=-2\)

=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)

Dấu = xảy ra khi x=0

Vậy: Giá trị lớn nhất của P là -5/2 khi x=0

Bình luận (0)
H24
Xem chi tiết
H24
26 tháng 2 2023 lúc 22:19

Bình luận (0)
H24
Xem chi tiết
PA
16 tháng 7 2016 lúc 15:02

\(\left|2x-3\right|\ge0\)

\(\Rightarrow2017-\left|x-3\right|\le2017\)

Vậy giá trị lớn nhất của P là 2017 khi |2x - 3| = 0 <=> x = 3/2

Bình luận (0)
HP
16 tháng 7 2016 lúc 15:04

Ta có: \(\left|2x-3\right|\) lớn hơn hoặc bằng 0

=> \(P=2017-\left|2x-3\right|\) < hơn hoặc = 2017

Dấu '=' xảu ra khi: \(2x-3=0\)

=> \(2x=-3\)

=> \(x=-\frac{3}{2}\)

Bình luận (1)
NN
Xem chi tiết
OP
31 tháng 1 2022 lúc 9:51

bạn ơi x+1 hay \(x^2+1\) vậy pạn??

Bình luận (3)
OP
31 tháng 1 2022 lúc 10:09

Đặt T là biểu thức cần tìm 

Ta có:

\(\Leftrightarrow Tx^2+Tx+T-x-1=0\)

\(\Leftrightarrow Tx^2+x\left(T-1\right)+T-1=0\)

TH1: T = 1 => x= 0

TH2: \(T\ne0\)

delta \(\ge0\Leftrightarrow\left(T-1\right)^2-4.T.\left(T-1\right)\ge0\)

\(\Leftrightarrow T^2-2T+1-4T^2+4T\Leftrightarrow-3T^2+2T+1\ge0\Leftrightarrow-\dfrac{1}{3}\le T\le1\)

\(T_{min}=-\dfrac{1}{3}\Rightarrow\) thế vào ra x

\(T_{max}=1\Rightarrow\) thế vào ra x

 

Bình luận (2)
XO
31 tháng 1 2022 lúc 10:14

*) Tìm Max \(P=\dfrac{x+1}{x^2+x+1}=\dfrac{x^2+x+1-x^2}{x^2+x+1}=1-\dfrac{x^2}{x^2+x+1}\le1\)

"=" xảy ra <=> x = 0

 

Bình luận (0)
NN
Xem chi tiết
DL
31 tháng 1 2022 lúc 15:21

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

Bình luận (1)
XO
31 tháng 1 2022 lúc 16:11

\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)

"=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy Max P = 1 <=> x = 1

P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)

\(\ge-4\)

"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5

Vậy Min P = -4 <=> x = -1,5

Bình luận (0)