\(\left\{{}\begin{matrix}x+ay=1\\ax+y=2\end{matrix}\right.\)
1. tìm a để hệ có nghiệm (x;y) là (1;0)
2. tìm a để hệ có nghiệm duy nhất
cho hệ pt \(\left\{{}\begin{matrix}x^3-ax=y\\y^3-ay=x\end{matrix}\right.\) tìm a để hệ pt có 5 nghiệm
Cho HPT: \(\left\{{}\begin{matrix}\left(a+1\right)x+ay=2a-1\\ax-y=a^2-2\end{matrix}\right.\). Tìm a để HPT có nghiệm (x;y)=(0;1)
Thay vào ta được
\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Tìm a nguyên để hệ \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\) có 1 nghiệm x,y sao cho x,y nguyên
Lời giải:
Từ PT(2) suy ra $x=a^2+4a-ay$. Thay vào PT(1):
$(a+1)(a^2+4a-ay)-ay=5$
$\Leftrightarrow (a+1)(a^2+4a)-y(a^2+2a)=5$
$\Leftrightarrow y(a^2+2a)=(a+1)(a^2+4a)-5=a^3+5a^2+4a-5$
Để $y$ nguyên thì $a^3+5a^2+4a-5\vdots a^2+2a$
$\Leftrightarrow a(a^2+2a)+3(a^2+2a)-2a-5\vdots a^2+2a$
$\Rightarrow 2a+5\vdots a^2+2a$
$\Rightarrow 2a^2+5a\vdots a^2+2a$
$\Rightarrow 2(a^2+2a)+a\vdots a^2+2a$
$\Rightarrow a\vdots a^2+2a$
$\Rightarrow 1\vdots a+2$
$\Rightarrow a+2=\pm 1$
$\Rightarrow a=-1$ hoặc $a=-3$
Thử lại thấy $a=-1$ thỏa mãn.
cho hệ pt \(\left\{{}\begin{matrix}x^3-ax=y\\y^3-ay=x\end{matrix}\right.\)
a, tìm m để hệ pt có nghiệm
b, tìm m để hệ pt có 5 nghiệm
\(\left\{{}\begin{matrix}ax+2ay=a+1\\x+\left(a+1\right)y=2\end{matrix}\right.\)
tìm a để hệ có nghiệm duy nhất (x;y)
Để hệ có nghiệm duy nhất thì \(\dfrac{a}{1}\ne\dfrac{2a}{a+1}\)
=>\(a\left(a+1\right)\ne2a\)
=>\(a^2+a-2a\ne0\)
=>\(a^2-a\ne0\)
=>\(a\left(a-1\right)\ne0\)
=>\(a\notin\left\{0;1\right\}\)
xác định a, b để hệ \(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)có nghiệm x=3;y=-1
Do hệ có nghiệm x=3; y=-1 nên thay cặp nghiệm vào hệ ta được:
\(\left\{{}\begin{matrix}2.3+a.\left(-1\right)=b+4\\a.3+b.\left(-1\right)=8+9a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)
Cho HPT: \(\left\{{}\begin{matrix}ax+y=3\\x+ay=-1\end{matrix}\right.\).Tìm a để HPT có nghiệm là cặp số (x;y) trong đó x=2
Do \(x=2\) là nghiệm của phương trình nên:
\(\left\{{}\begin{matrix}2a+y=3\\2+ay=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=3-2a\\ay=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ay=3a-2a^2\\ay=-3\end{matrix}\right.\)
\(\Rightarrow3a-2a^2=-3\)
\(\Rightarrow2a^2-3a-3=0\Rightarrow a=\dfrac{3\pm\sqrt{33}}{4}\)
Cho HPT: \(\left\{{}\begin{matrix}ax+y=3\\x+ay=-1\end{matrix}\right.\). Tìm a để HPT có nghiệm là cặp số (x;y) trong đó x=2
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+ay=1\\-ax+y=a\end{matrix}\right.\)
Chứng minh hệ có nghiệm duy nhất với mọi a. Tìm nghiệm duy nhất đó.