Những câu hỏi liên quan
DY
Xem chi tiết
BB
Xem chi tiết
NT
9 tháng 3 2022 lúc 14:35

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

Bình luận (3)
NH
Xem chi tiết
AH
18 tháng 1 2024 lúc 19:43

Lời giải:
Từ PT(2) suy ra $x=a^2+4a-ay$. Thay vào PT(1):

$(a+1)(a^2+4a-ay)-ay=5$

$\Leftrightarrow (a+1)(a^2+4a)-y(a^2+2a)=5$

$\Leftrightarrow y(a^2+2a)=(a+1)(a^2+4a)-5=a^3+5a^2+4a-5$

Để $y$ nguyên thì $a^3+5a^2+4a-5\vdots a^2+2a$
$\Leftrightarrow a(a^2+2a)+3(a^2+2a)-2a-5\vdots a^2+2a$

$\Rightarrow 2a+5\vdots a^2+2a$

$\Rightarrow 2a^2+5a\vdots a^2+2a$

$\Rightarrow 2(a^2+2a)+a\vdots a^2+2a$

$\Rightarrow a\vdots a^2+2a$

$\Rightarrow 1\vdots a+2$
$\Rightarrow a+2=\pm 1$

$\Rightarrow a=-1$ hoặc $a=-3$

Thử lại thấy $a=-1$ thỏa mãn.

Bình luận (0)
DY
Xem chi tiết
KK
26 tháng 8 2021 lúc 15:56

m nào

Bình luận (0)
DY
26 tháng 8 2021 lúc 15:58

đề bài là tìm a nhé

 

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 1 2024 lúc 23:11

Để hệ có nghiệm duy nhất thì \(\dfrac{a}{1}\ne\dfrac{2a}{a+1}\)

=>\(a\left(a+1\right)\ne2a\)

=>\(a^2+a-2a\ne0\)

=>\(a^2-a\ne0\)

=>\(a\left(a-1\right)\ne0\)

=>\(a\notin\left\{0;1\right\}\)

Bình luận (0)
H24
Xem chi tiết
NL
19 tháng 1 2024 lúc 20:59

Do hệ có nghiệm x=3; y=-1 nên thay cặp nghiệm vào hệ ta được:

\(\left\{{}\begin{matrix}2.3+a.\left(-1\right)=b+4\\a.3+b.\left(-1\right)=8+9a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)

Bình luận (0)
BB
Xem chi tiết
NL
3 tháng 3 2022 lúc 18:06

Do \(x=2\) là nghiệm của phương trình nên:

\(\left\{{}\begin{matrix}2a+y=3\\2+ay=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=3-2a\\ay=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ay=3a-2a^2\\ay=-3\end{matrix}\right.\)

\(\Rightarrow3a-2a^2=-3\)

\(\Rightarrow2a^2-3a-3=0\Rightarrow a=\dfrac{3\pm\sqrt{33}}{4}\)

Bình luận (0)
BB
Xem chi tiết
VL
Xem chi tiết