NH

Tìm a nguyên để hệ \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\) có 1 nghiệm x,y sao cho x,y nguyên

AH
18 tháng 1 2024 lúc 19:43

Lời giải:
Từ PT(2) suy ra $x=a^2+4a-ay$. Thay vào PT(1):

$(a+1)(a^2+4a-ay)-ay=5$

$\Leftrightarrow (a+1)(a^2+4a)-y(a^2+2a)=5$

$\Leftrightarrow y(a^2+2a)=(a+1)(a^2+4a)-5=a^3+5a^2+4a-5$

Để $y$ nguyên thì $a^3+5a^2+4a-5\vdots a^2+2a$
$\Leftrightarrow a(a^2+2a)+3(a^2+2a)-2a-5\vdots a^2+2a$

$\Rightarrow 2a+5\vdots a^2+2a$

$\Rightarrow 2a^2+5a\vdots a^2+2a$

$\Rightarrow 2(a^2+2a)+a\vdots a^2+2a$

$\Rightarrow a\vdots a^2+2a$

$\Rightarrow 1\vdots a+2$
$\Rightarrow a+2=\pm 1$

$\Rightarrow a=-1$ hoặc $a=-3$

Thử lại thấy $a=-1$ thỏa mãn.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VP
Xem chi tiết
VL
Xem chi tiết
3P
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
LS
Xem chi tiết