giải pt vô tỉ
\(\sqrt{2x+1}+\sqrt[3]{3x-4}=5\)
B1:Giải pt vô tỉ sau 4\(x^4\)+\(x^2\)+3x+4=3\(\sqrt[3]{16x^3+12x}\)
B2:Giải pt vô tỉ sau 4\(x^2\)-11x+10=(x-1)\(\sqrt{2x^2-6x+2}\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
Chi tiết một chút!
Bài 2:
ĐKXĐ:....
Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)
Viết lại pt dưới dạng:
\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)
\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)
Giải PT vô tỉ:
\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\)
\(\Leftrightarrow\sqrt{14x+7}-7-\left(\sqrt{2x+3}-3\right)=\sqrt{5x+1}-4\)
\(\Leftrightarrow\dfrac{14x+7-49}{\sqrt{14x+7}+7}-\dfrac{2x+3-9}{\sqrt{2x+3}+3}=\dfrac{5x+1-16}{\sqrt{5x+1}+4}\)
\(\Leftrightarrow\dfrac{14x-42}{\sqrt{14x+7}+7}-\dfrac{2x-6}{\sqrt{2x+3}+3}=\dfrac{5x-15}{\sqrt{5x+1}+4}\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{14}{\sqrt{14x+7}}-\dfrac{2}{\sqrt{2x+3}+3}-\dfrac{5}{\sqrt{5x+1}+4}\right)=0\Leftrightarrow x=3\)
Giúp mình với cảm ơn ạ
Giải các pt vô tỉ sau
1)\(\sqrt{21-x}+1=x\)
2)\(\sqrt{8-x}+2=x\)
3)\(1+\sqrt{3x+1}=3x\)
4)\(2+\sqrt{3x-5}=\sqrt{x+1}\)
1) Ta có: \(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1-21+x=0\)
\(\Leftrightarrow x^2-3x-20=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)
1)\(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow21-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
2)\(\sqrt{8-x}+2=x\)
\(\Leftrightarrow8-x=\left(x-2\right)^2\)
\(\Leftrightarrow8-x=x^2-4x+4\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
3)\(1+\sqrt{3x+1}=3x\)
\(\Leftrightarrow3x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow3x+1=9x^2-6x+1\)
\(\Leftrightarrow9x^2-9x=0\Leftrightarrow9x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
giải phương trình vô tỉ sau
\(\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}=3x\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Áp dụng BĐT AM - GM cho các số dương ta có :
\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)
\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)
\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)
\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=1\)
giải pt vô tỉ
\(\sqrt{5-2x}=\sqrt{x-1}\)
Đk:\(x\in\left[1;\frac{5}{2}\right]\)
Ta thấy 2 vế luôn dương, bình phương lên đc:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk:\(\frac{5}{2}\le x\le1\)
2 vế dương bình lên ta có:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
GIẢI CÁC PT SAU:
\(\sqrt{x+1}+\sqrt{x-1}=4\)
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
giải phương trình vô tỉ sau
câu 1) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
câu2) \(\sqrt[2016]{x^2+3x-3}+\sqrt[2016]{-x^2-3x+5}=2\)
câu 3) \(2x^2-2x+11=3\sqrt[3]{4x-4}\)
a)ĐK:..... tự làm
\(\Leftrightarrow\sqrt{2x^2-1}-1+x\sqrt{2x-1}-1=2x^2-2\)
\(\Leftrightarrow\frac{2x^2-1-1}{\sqrt{2x^2-1}+1}+\frac{x^2\left(2x-1\right)-1}{x\sqrt{2x-1}+1}=2\left(x^2-1\right)\)
\(\Leftrightarrow\frac{2x^2-2}{\sqrt{2x^2-1}+1}+\frac{2x^3-x^2-1}{x\sqrt{2x-1}+1}=2\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{\left(x-1\right)\left(2x^2+x+1\right)}{x\sqrt{2x-1}+1}-2\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{2x^2+x+1}{x\sqrt{2x-1}+1}-2\left(x+1\right)\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)trình bày lại ý tưởng
ĐK:....
Áp dụng BĐT AM-GM ta có:
\(\sqrt[2016]{x^2+3x-3}\le\frac{x^2+3x-3+1+1+....+1}{2016}\text{(2015 số 1)}\)
\(\sqrt[2016]{-x^2-3x+5}\le\frac{-x^2-3x+5+1+1+....+1}{2016}\left(\text{2015 số 1,too}\right)\)
Cộng theo vế 2 BĐT trên ta có:
\(VT\le\frac{x^2+3x-3-x^2-3x+5+1+1+....+1}{2016}\left(\text{4030 số 1}\right)\)
\(=\frac{-3+5+1+1+....+1}{2016}=\frac{4032}{2016}=VP\)
Xảy ra khi \(x=1\) (thực ra còn x=-4 nữa cơ mà ko thỏa mẵn điều kiện để xài AM-GM)
c) Câu này sai đề nhé
\sqrt{x}\times\sqrt{6x-5}=x^{3}+2x^{2}-2x-1
pt vô tỉ ạ.
hộ e vs ak
Giải các pt vô tỉ sau ( bằng phương pháp đặt ẩn phụ đưa về phương trình tích )
a) \(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
b) \(\sqrt{x^2-3x}+2\sqrt{x}-4\sqrt{x-3}-x+8=0\)
c) \(\left(5x^2+4x+3\right)\sqrt{x}=\left(x+3\right)\sqrt{5x^2+4x}\)
d) \(\left(x+2\right)\sqrt{3x+\frac{1}{x}}=3x^2+3\)
e)\(\left(x^2+2x+1\right)3\sqrt{x^2+\frac{3}{x}}=x^3+2x^2+5\)