chứng minh:
4^2018 - 1 chia hết cho 3
5^2019 - 1 chia hết cho 4
giúp mk với nha mn
Chứng minh:
4^2018 - 1 chia hết cho 3
5^2019 - 1 chia hết cho 4
4^2019 + 1 chia hết cho 5
5^2017 + 1 chia hết cho 6
giúp mk với nha mn
a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
a, Ta có: 4≡1(mod3)4≡1(���3)
⇒42018≡1(mod3)⇒42018≡1(���3)
⇒42018−1⋮3⇒42018−1⋮3
b, Ta có: 5≡1(mod4)5≡1(���4)
⇒52019≡1(mod4)⇒52019≡1(���4)
⇒52019−1⋮4⇒52019−1⋮4
c, 4≡−1(mod5)4≡−1(���5)
⇒42019≡−1(mod5)⇒42019≡−1(���5)
⇒42019+1⋮5⇒42019+1⋮5
d, 5≡−1(mod6)5≡−1(���6)
⇒52017≡−1(mod6)⇒52017≡−1(���6)
⇒52017+1⋮6
4^2019 + 1 chia hết cho 5
5^2017 + 1 chia hết cho 6
giúp mk với nha mn
\(4^{2019}+1\)
Xét:
\(\left\{{}\begin{matrix}4^1=4=\overline{...4}\\4^2=16=\overline{...6}\\4^3=64=\overline{...4}\\4^4=256=\overline{...6}\end{matrix}\right.\)
Từ đó ta có nhận xét:
\(4\) lũy thừa lẻ thì có tận cùng = 4,lũy thừa chẵn thì có tận cùng =6
\(2019\) là số lẻ
\(\Rightarrow4^{2019}=\overline{...4}\)
\(\Rightarrow4^{2019}+1=\overline{...5}\)
\(\Rightarrow4^{2019}+1⋮5\Rightarrowđpcm\)
4^2019 + 1 chia hết cho 5
5^2017 + 1 chia hết cho 6
giúp mk với nha mn
a: \(4^{2019}+1=\left(4+1\right)\cdot\left(4^{2018}-4^{2017}+4^{2016}-...+1\right)\)
\(=5\cdot A⋮5\)
b: \(5^{2017}+1=\left(5+1\right)\left(5^{2016}-5^{2015}+...+1\right)\)
\(=6\cdot B⋮6\)
chứng minh rằng: 35 ^ 2019 - 35 ^ 2018 chia hết cho 17
Ta có: 352019-352018 = 352018(35-1)
= 352018.34
Vì 34 chia hết cho 17 nên suy ra 352018.34 chia hết cho 17
Vậy 352019-352018 chia hết cho 17.
H=1/2019+2/2018+3/2017+...+2018/2+2019/1 chứng minh H+2019 chia hết 2020. Giups mik nha đúng mik tick cho :))))
Chứng minh rằng \(2018^{2019}+2020^{2019}\) chia hết cho 2019 ( làm ơn giúp mk vs mk đang gấp, thanks mn )
Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b ; an - bn \(⋮\)a - b
Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 )
20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ; 20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019
\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
1) Chứng minh rằng (n-1).(n+4)-(n-4).(n+1) luôn chia hết cho 6 với mọi số nguyên x
2) Xác định a, b, c biết:
a) (ax2+bx+c).(x+1)= x3+8x2+19x+12
b) (ax2+bx+c).(x+3)= x3+2x2-3x
c) (x2+cx+2) (ax+b)= x2+x2-2
3) Chứng minh rằng:
a) 352019-352018 chia hết cho 17
b) 432018+432019 chia hết cho11
Bài 3:
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)