Những câu hỏi liên quan
VL
Xem chi tiết
NT
19 tháng 1 2022 lúc 23:09

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

Bình luận (0)
AL
Xem chi tiết
H24
24 tháng 7 2023 lúc 21:14

\(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}+3+x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

Bình luận (0)
NT
24 tháng 7 2023 lúc 21:06

\(=\dfrac{\sqrt{x}+3+\sqrt{x}\left(\sqrt{x}-1\right)-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-9+x-\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

Bình luận (0)
H24
24 tháng 7 2023 lúc 21:17

`(1)/(\sqrt{x}+1)+(\sqrt{x})/(\sqrt{x}+3)-(12)/((\sqrt{x}+3)(\sqrt{x}-1))`

Điều Kiện `x>=0;x\ne1`

`=(\sqrt{x}+3+\sqrt{x}(\sqrt{x}-1)-12)/((\sqrt{x}+3)(\sqrt{x}-1))`

`=(\sqrt{x}+3+x-\sqrt{x}-12)/((\sqrt{x}+3)(\sqrt{x}-1))`

`=(x-9)/((\sqrt{x}+3)(\sqrt{x}-1))`

`=((\sqrt{x}-3)(\sqrt{x}+3))/((\sqrt{x}+3)(\sqrt{x}-1))`

`=(\sqrt{x}-3)/(\sqrt{x}-1)`

Bình luận (0)
DV
Xem chi tiết
H24
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Bình luận (0)
NM
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Bình luận (0)
NL
Xem chi tiết
NT
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Bình luận (0)
NT
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Bình luận (0)
TN
Xem chi tiết
NL
14 tháng 8 2021 lúc 8:15

\(\left(x-2\right)\left(x-3\right)\left(x+3\right)-\left(x+1\right)^3\)

\(=\left(x-2\right)\left(x^2-9\right)-\left(x^3+3x^2+3x+1\right)\)

\(=x^3-2x^2-9x+18-x^3-3x^2-3x-1\)

\(=-5x^2-12x+17\)

Bình luận (0)
DV
Xem chi tiết
ND
Xem chi tiết
TC
16 tháng 7 2021 lúc 20:27

undefined

Bình luận (1)
NT
16 tháng 7 2021 lúc 20:28

Ta có: M=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

Bình luận (0)
NT
16 tháng 7 2021 lúc 20:31

undefined

Bình luận (0)
LP
Xem chi tiết
NL
26 tháng 12 2022 lúc 22:42

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

Bình luận (0)
NL
26 tháng 12 2022 lúc 22:45

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

Bình luận (0)
HA
Xem chi tiết