Những câu hỏi liên quan
RG
Xem chi tiết
MH
27 tháng 12 2023 lúc 22:21

a) Ta có: I là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-2+2}{2}=0\end{matrix}\right.\)

\(\Rightarrow I\left(1;0\right)\)

b) Ta có: G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-1+3+4}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+2+1}{3}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow G\left(2;\dfrac{1}{3}\right)\)

Bình luận (0)
TT
Xem chi tiết
NL
5 tháng 1 2022 lúc 21:21

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CM}=\left(x+5;y-1\right)\\\overrightarrow{AB}=\left(3;-7\right)\\\overrightarrow{AC}=\left(-4;-2\right)\end{matrix}\right.\) \(\Rightarrow2\overrightarrow{AB}-3\overrightarrow{AC}=\left(18;-8\right)\)

\(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\Leftrightarrow\left\{{}\begin{matrix}x+5=18\\y-1=-8\end{matrix}\right.\) \(\Rightarrow M\left(13;-7\right)\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
20 tháng 3 2019 lúc 6:43

Đáp án C

Bình luận (0)
HQ
Xem chi tiết
NL
26 tháng 12 2022 lúc 18:41

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

Bình luận (0)
HQ
Xem chi tiết
NL
27 tháng 4 2020 lúc 21:20

Câu 1:

Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))

Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)

Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)

\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)

Bài 2:

Bạn tham khảo ở đây:

Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến

Bình luận (0)
NT
Xem chi tiết
H24
2 tháng 1 2022 lúc 7:47

a) \(\overrightarrow{AB}\)=(-1-2;2-1)

<=>\(\overrightarrow{AB}\)(-3;1)

b) ta có:

D(x;y)\(\left\{{}\begin{matrix}3\left(-3\right)-2\left(x-\left(-1\right)\right)+x-3=0\\3.1-2\left(y-2\right)+y-4=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}-9-2x-2+x-3=0\\3-2y+4+y-4=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}-x-14=0\\-y+3=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=-14\\y=3\end{matrix}\right.\)

vậy D(-14;3)

Bình luận (0)
HP
Xem chi tiết
H24
Xem chi tiết
NT
19 tháng 2 2021 lúc 20:25

Ta có: \(M\left( {0;y} \right)\) 

Lại có: \(\overrightarrow {MA} \left( {1;1 - y} \right),\overrightarrow {MB} \left( {2; - 2 - y} \right)\)

Theo yêu cầu bài toán, suy ra: \({1^2} + {\left( {1 - y} \right)^2} = {2^2} + {\left( {2 + y} \right)^2} \Leftrightarrow 1 + 1 - 2y + {y^2} = 4 + 4 + 4y + {y^2} \Leftrightarrow y = - 1\)

Nên \(M\left( {0; - 1} \right)\)

Vậy \(a = 0,b = - 1 \Rightarrow a + b = 0 + \left( { - 1} \right) = - 1\)

Bình luận (0)