Cho a^2 + b^2 + c^2 - ab - bc - ca = 0. CMR a = b = c
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
b thiếu đề
@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma
giúp e vs ạ! Cần gấp
Thanks nhiều
$\rm Cho\ a,b,c \ge 0 .Thoả \ mãn \ ab+bc+ac=abc .Chứng \ minh\ a^{2}+b^{2}+c^{2}+5abc \ge 8$
`b)` Cho` a,b,c>=0,ab+bc+ca+abc=4`
CMR:`a^2+b^2+c^2+5abc>=8`
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
a+b+c=0
=> ( a+ b+c ) ^2 =0 ( rồi phân tích chuyển dấu )
=> a^2+ b^2+ c^2 = - ( 2ab+ 2ac+ 2bc)
=> ( a ^2 + b^2 + c^2 ) ^2 = ( 2ab+ 2ac+ 2bc) ^2
. Rồi bạn tách tiếp nghen, bạn có làm được tiếp chứ? Có gì cứ hỏi tớ tiếp nhé
cho 2≥ a, b, c ≥0 và a+b+c=3. CMR: ab+bc+ca≥2
Lời giải:
Do $a,b,c\leq 2$ nên:
$(a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc+4(a+b+c)-2(ab+bc+ac)-8\leq 0$
$\Leftrightarrow abc+4-2(ab+bc+ac)\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4\geq 4$ (do $abc\geq 0$)
$\Rightarrow ab+bc+ac\geq 2$ (đpcm)
Cho a^2 + b^2 + c^2 - ab - bc - ca = 0. CMR a = b = c
Ta co:a^2+b^2+c^2-ab-bc-ca=0
<=>2(a^2+b^2+c^2-ab-bc-ca)=0
<=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)=0
<=>(a-b)^2+(b-c)^2+(a-c)^2=0
<=>a=b=c
Cho a, b, c > 0 thỏa mãn: ab + bc + ca + abc ≤ 4. CMR: a2 + b2 + c2 + a + b + c ≥ 2(ab+bc+ca)
Ta cần chứng minh
\(a+b+c\ge ab+bc+ca\)
do \(x^2+y^2+z^2\ge xy+yz+zx\)
đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a,b,c > 0. CMR: (a + b + c)2 \(\ge\) 3(ab + bc + ca)
và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)