Những câu hỏi liên quan
DP
Xem chi tiết
AH
18 tháng 12 2023 lúc 21:44

Lời giải:

$x^2+55=4y^2$

$\Leftrightarrow 55=4y^2-x^2=(2y-x)(2y+x)$

Do $x,y$ là stn nên $2y+x$ là stn. 

$\Rightarrow 2y+x>0$. Mà $(2y+x)(2y-x)=55>0$ nên $2y-x>0$.

Vậy $2y+x> 2y-x>0$.

Khi đó ta có các TH sau:

TH1: $2y-x=1, 2y+x=55\Rightarrow y=14; x=27$ (tm) 

TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$ (tm)

Bình luận (0)
HT
Xem chi tiết
NT
20 tháng 12 2023 lúc 7:28

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
NB
Xem chi tiết
NA
11 tháng 3 2023 lúc 20:32

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

Bình luận (0)
CL
Xem chi tiết
NH
Xem chi tiết
LH
21 tháng 5 2021 lúc 11:58

Áp dụng bđt bunhia có:

\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{25}{4}\ge\left(x+y\right)^2\)\(\Leftrightarrow x+y\le\dfrac{5}{2}\)

Dấu = xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\x^2+4y^2=5\end{matrix}\right.\Leftrightarrow\) \(\left\{{}\begin{matrix}16y^2+4y^2=5\\x=4y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
DT
21 tháng 11 2015 lúc 23:04

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

Bình luận (0)
LD
Xem chi tiết
GD

a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5

TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7

TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8

Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}

Bình luận (0)
GD

34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9

TH1: y=0 => Các số chia hết cho 36: Không có số thoả

TH2: y=2 => Các số chia hết cho 36: 34452 => x=4

TH3: y=4 => Các số chia hết cho 36: Không có số thoả

TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9

TH5: y=8 => Các số chia hết cho 36: Không có số thoả

=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956

Vậy: (x;y)={(4;2); (0;6); (9;6)}

Bình luận (0)
LD
Xem chi tiết
H9
4 tháng 8 2023 lúc 13:31

Để \(\overline{x73y}\) chia hết cho 4 thì \(\overline{3y}\) phải chia hết cho 4 

Mà: \(\overline{3y}\) ⋮ 4 Khi \(y\in\left\{2;6\right\}\)

\(1\le x\le9\) 

Để \(\overline{x73y}\) chia hết cho 5 khi \(y\in\left\{0;5\right\}\)

\(1\le x\le9\)

Bình luận (0)
NT
Xem chi tiết
DD
20 tháng 4 2015 lúc 15:55

xy-x-y=2

xy-x-y+1=2+1

x(y-1) - (y-1)=3

(y-1)(x-1)=3

x;y nguyên

3=1.3=3.1=(-1)(-3)=(-3)(-1)

y-1    1     3    -1    -3

y       2     4     0    -2

x-1    3     1    -3    -1

x       4     2    -2    0

Vậy có những cặp x;y:

2;4

4;2

0;-2

-2;0

Bình luận (0)