Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LQ
Xem chi tiết
NT
Xem chi tiết
DH
16 tháng 9 2017 lúc 12:55

Ta có :

\(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

\(=0.\left(a^2-ab+b^2\right)=0\left(đ\text{pcm}\right)\)

Bình luận (0)
DL
Xem chi tiết
LV
Xem chi tiết
NL
22 tháng 6 2021 lúc 5:34

Từ giả thiết: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{matrix}\right.\) (1)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\ge3\left(a+b+c\right)-1\)

Nên ta chỉ cần chứng minh:

\(3\left(a+b+c\right)-1\ge2\left(1+a+b+c\right)\)

\(\Leftrightarrow a+b+c\ge3\) (hiển nhiên đúng theo (1))

Bình luận (0)
HT
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:30

Do vai trò của 3 biến là như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\) Theo BĐT Chebyshev:

\(3\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (1)

Bunhiacopxki:

\(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le6\left(a^3+b^3+c^3\right)\)

Nên ta chỉ cần chứng minh:

\(\left(a^3+b^3+c^3\right)^2\ge6\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow a^3+b^3+c^3\ge6\)

Hiển nhiên đúng do: \(a^3+b^3+c^3\ge3abc=6\)

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
DD
Xem chi tiết
DQ
30 tháng 5 2017 lúc 16:24

sửa đề: \(a^3+b^3+c^3=3abc\)

Giải:

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3c\left(a+b\right)-3ab\right]=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(a-c\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)(đpcm)

Bình luận (0)
TP
Xem chi tiết