a,b,c>0 .CMR: abc/(a+b)(b+c)(c+a) <= (a+b)(a+b+2c)/(3a+3b+2c)2 <= 1/8
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a≥ 0; b≥0 ; c≥0
CMR: (a+b).(b+c).(c+a) ≥ 8.abc
Cho a+ b+c=0. Cmr
a³+b³+a²c+b²c-abc=0
Ta có :
\(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
\(=0.\left(a^2-ab+b^2\right)=0\left(đ\text{pcm}\right)\)
Cho các số thực a,b,c thỏa mãn (a+b)(b+c)(c+a)= abc và (a^3+b^3)(b^3+c^3)(c^3+a^3)=(abc)^3. CMR: abc=0
Cho a,b,c > 0, abc = 1. CMR :
(a+b)(b+c)(c+a)\(\ge2\left(1+a+b+c\right)\)
Từ giả thiết: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{matrix}\right.\) (1)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\ge3\left(a+b+c\right)-1\)
Nên ta chỉ cần chứng minh:
\(3\left(a+b+c\right)-1\ge2\left(1+a+b+c\right)\)
\(\Leftrightarrow a+b+c\ge3\) (hiển nhiên đúng theo (1))
cho a,b,c>0 ; abc=2.CMR
\(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
Do vai trò của 3 biến là như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow\) Theo BĐT Chebyshev:
\(3\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (1)
Bunhiacopxki:
\(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le6\left(a^3+b^3+c^3\right)\)
Nên ta chỉ cần chứng minh:
\(\left(a^3+b^3+c^3\right)^2\ge6\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3\ge6\)
Hiển nhiên đúng do: \(a^3+b^3+c^3\ge3abc=6\)
cho a,b,c>0; abc=1 CMR (a+b)(b+c)(c+a)>=2(1+a+b+c)
cho a,b,c>0; abc=1 CMR (a+b)(b+c)(c+a)>=2(1+a+b+c)
CHo 0<=a,b,c<=1 CMR a+b+c+1/abc>=1/a+1/b+1/c+abc
CMR: a^3+b^3+c^3=abc thì a=b=c hoặc a+b+c=0
sửa đề: \(a^3+b^3+c^3=3abc\)
Giải:
\(a^3+b^3+c^3=3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3c\left(a+b\right)-3ab\right]=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(a-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)(đpcm)
cho abc >0 và abc=1. CMR:(a-1)/c+(c-1)/b+(b-1)/a>=0