Chứng minh: \(\frac{\left(a+b\right)\left(a+b+2c\right)}{\left(3a+3b+2c\right)^2}\le\frac{1}{8}\)
Ta có:
\(\left(a+b\right)\left(a+b+2c\right)=\frac{1}{2}\left(2a+2b\right)\left(a+b+2c\right)\)
\(\le\frac{1}{2}.\left(\frac{2a+2b+a+b+2c}{2}\right)^2=\frac{1}{8}.\left(3a+3b+2c\right)^2\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+b+2c\right)}{\left(3a+3b+2c\right)^2}\le\frac{1}{8}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}=\frac{1}{8}\)
Phần còn lại dễ nhé :3
vế đầu cơ , cái abc/(a+b)(b+c)(c+a) <= (a+b)(a+b+2c)/(3a+3b+2c)^2