Từ giả thiết: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{matrix}\right.\) (1)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\ge3\left(a+b+c\right)-1\)
Nên ta chỉ cần chứng minh:
\(3\left(a+b+c\right)-1\ge2\left(1+a+b+c\right)\)
\(\Leftrightarrow a+b+c\ge3\) (hiển nhiên đúng theo (1))