Những câu hỏi liên quan
H24
Xem chi tiết
NL
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Bình luận (0)
NL
Xem chi tiết
HB
Xem chi tiết
NL
8 tháng 4 2022 lúc 14:42

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

Bình luận (0)
MN
Xem chi tiết
NL
4 tháng 10 2021 lúc 22:43

ĐKXĐ: \(x>-1\)

Bước quan trọng nhất là tách hàm

\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)

Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)

Bình luận (0)
FA
Xem chi tiết
TV
Xem chi tiết
NK
11 tháng 2 2016 lúc 13:51

Bài này ở đâu vậy bạn? Có phải violympic không?

Bình luận (0)
TV
11 tháng 2 2016 lúc 16:18

violympic - vòng 13 - bài 1

mà còn nhiều bài khó hơn nữa !

 

 

Bình luận (0)
NK
11 tháng 2 2016 lúc 19:46

Bạn xem lại đề xem có nhầm ko chứ bài này không có nghiệm đẹp thì rất khó tìm ra cách giải, cho dù có bình phương lên cũng không được !

Bình luận (0)
NP
Xem chi tiết
TT
Xem chi tiết
NL
5 tháng 1 2021 lúc 23:33

\(\Leftrightarrow\dfrac{3^x+3}{\sqrt{9^x+1}}=m\)

Đặt \(3^x=t>0\)

\(\Rightarrow\dfrac{t+3}{\sqrt{t^2+1}}=m\)

Xét hàm \(f\left(t\right)=\dfrac{t+3}{\sqrt{t^2+1}}\) khi \(t>0\) rồi lập BBT, từ đó xác định ra m có vẻ khá đơn giản

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 1 2023 lúc 20:46

Đặt \(\sqrt[3]{2x-1}=t\Rightarrow2x=t^3+1\)

Ta được hệ: \(\left\{{}\begin{matrix}x^3+1=2t\\t^3+1=2x\end{matrix}\right.\)

\(\Rightarrow x^3-t^3=2t-2x\)

\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2\right)+2\left(x-t\right)=0\)

\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2+2\right)=0\)

\(\Leftrightarrow x=t\) (do \(x^2+xt+t^2+2=\left(x+\dfrac{t}{2}\right)^2+\dfrac{3t^2}{4}+2>0\))

\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3=2x-1\)

\(\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)

Tới đây bấm máy hoặc dùng Viet

Bình luận (0)