CM
\(n^6+n^4-2n^2⋮72\forall n\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR: \(n^6+n^4-2n^2\) chia hết cho 72 \(\forall n\)
Đặt \(Q=n^6+n^4-2n^2\)
\(\Rightarrow Q=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left[\left(n^4-1\right)+\left(n^2-1\right)\right]\)
\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+\left(n^2-1\right)\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
\(=n\cdot n\left(n+1\right)\left(n-1\right)\left(n^2+2\right)\)
* Nếu n chẵn. Đặt n = 2k (với k thuộc Z)
\(\Rightarrow Q=4k^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)
\(=4k^2\left(2k-1\right)\left(2k+1\right)\cdot2\left(2k^2+1\right)\)
\(=8k^2\left(2k^2+1\right)\left(2k+1\right)\left(2k-1\right)⋮8\)
* Nếu n lẻ. Đặt n = 2k+1 (với k thuộc Z)
\(\Rightarrow\)\(Q = (2k + 1)^2 .2k (2k + 2)(4k^2 + 4k + 1 + 2) \)
\(= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) \)
Vì \(k\left(k+1\right)⋮2\) \(\Rightarrow Q⋮8\)
Vậy \(Q⋮8\)
** Nếu \(n⋮3\)
\(\Rightarrow n^2⋮9\Rightarrow Q⋮9\)
** Nếu \(n⋮̸3\)
Vì \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(n⋮̸3\Rightarrow n^2+2⋮3\)
\(\Rightarrow Q⋮9\)
Có \(\left(8;9\right)=1\Rightarrow Q⋮72\)
Chứng minh :\(n^6+n^4-2n^2⋮72\left(\forall n\inℤ\right)\)
1. CM: \(55^{n+1}+55^n⋮54\)
2. CM : \(5^6-10^4⋮45\)
3. CM : \(n^2\left(n+2\right)+2n\left(n+2\right)⋮6\left(\forall n\in Z\right)\)
Câu 1:
Ta có: \(55^{n+1}+55^n\)
\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)
Câu 2:
Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)
\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)
\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)
\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)
cm n6+n4-2n2 chia hết cho 72
a) tìm n \(\in\)N để (2n-1)\(⋮\)7
b) chứng minh n6+n4-2n2 \(⋮\)72 \(\forall\)n\(\in\)Z
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
Cho: A = \(n^6-n^4+2n^3+2n^2\left(\forall n\in N;n>1\right)\)
C/m: A ko phải là số chính phương
Ta có :
\(A=n^6-n^4+2n^3+2n^2\)
\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)
\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)
\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)
\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)
\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)
\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)
Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Và \(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)
Vậy A không phải số chính phương
Chứng minh các mệnh đề sau
\(a,n^3+2n⋮3\) \(\forall n\in N\) *
\(b,13^n-1⋮6\forall n\in N\)*
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
C/m \(n^6+n^4-2n^2⋮72\) (n thuộc Z)
b, \(3^{2n}-9⋮72\) (n thuộc N sao)
Cho n ∈ N. Chứng minh rằng:
a) (n+10)(n+15)⋮2
b) n(n+1)(2n+1)⋮6
c) n(2n+1)(7n+1)⋮6 ∀n ∈ N
a) Ta chia làm 2 trường hợp
*Trường hơp 1: n chẵn
Nếu n chẵn => (n + 10)⋮2 => (n+10)(n+15)⋮2
*Trường hợp 2: n lẻ
Nếu n lẻ => (n + 15)⋮ 2 => (n+10)(n+15)⋮2
Vậy với mọi trường hợp n ∈ N thì (n+10)(n+15)⋮2