Những câu hỏi liên quan
HN
Xem chi tiết
LT
11 tháng 4 2022 lúc 8:25

https://vungoi.vn/cau-hoi-44804

Bình luận (0)
BP
Xem chi tiết
H24
6 tháng 8 2017 lúc 18:32

m=-3

Bình luận (0)
BP
Xem chi tiết
H24
6 tháng 8 2017 lúc 18:33

cần m^2 -4m +3 =0 => m=1 hoặc m=3

với m =1 => <0=> loiaj

với m=3 có -3 <0 đúng nhận

Bình luận (0)
MP
Xem chi tiết
CK
Xem chi tiết
NT
28 tháng 7 2023 lúc 0:30

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

Bình luận (0)
BP
19 tháng 3 2024 lúc 23:19
Bình luận (0)
NH
Xem chi tiết
NM
21 tháng 11 2021 lúc 17:06

\(c,PT\Leftrightarrow m^2x-9x-\left(m^2-4m+3\right)=0\\ \Leftrightarrow x\left(m^2-9\right)-\left(m-3\right)\left(m-1\right)=0\)

PT có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\\left(m-3\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=3\)

\(d,PT\Leftrightarrow m^2x-m^2-4mx+5m-4=0\\ \Leftrightarrow x\left(m^2-4m\right)-\left(m^2-5m+4\right)=0\\ \Leftrightarrow xm\left(m-4\right)-\left(m-1\right)\left(m-4\right)=0\)

PT có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-4\right)=0\\\left(m-4\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=4\)

 

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 1 2019 lúc 7:53

Đặt 

Suy ra 

Ta có 

Ta có bảng biến thiên

Từ bảng biến thiên ta suy ra 

Khi đó bất phương trình trở thành: 

Xét hàm số  với 

Ta có 

Suy ra hàm số f(t) nghịch biến trên 

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 9 2017 lúc 7:21

Phương trình đã cho nghiệm đúng với  hay phương trình có vô số nghiệm khi

m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅

Đáp án cần chọn là: D

Bình luận (0)
VH
Xem chi tiết
NL
18 tháng 3 2021 lúc 22:15

\(\Leftrightarrow\left(x-3\right)^2+2\left(m+2\right)\left|x-3\right|+m^2+4m+3>0\)

Đặt \(\left|x-3\right|=t\Rightarrow0\le t< 5\)

\(\Rightarrow t^2+2\left(m+2\right)t+m^2+4m+3>0\) ;\(\forall t\in[0;5)\)

\(\Leftrightarrow\left(t+m+1\right)\left(t+m+3\right)>0\)

\(\Rightarrow-m-3< t< -m-1\)

Pt nghiệm đúng với mọi \(t\in[0;5)\) khi và chỉ khi

\(\left\{{}\begin{matrix}0>-m-3\\5\le-m-1\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\le-5\end{matrix}\right.\) 

\(\Rightarrow\) Không tồn tại m thỏa mãn

Bình luận (4)