BP

Xác định m đẻ bất phương trình có nghiệm đúng với mọi x

(m2−4m+3)x+m−m2<0

NC
18 tháng 1 2019 lúc 9:48

\(m^2-4m+3=\left(m-1\right)\left(m-3\right)\)

\(m^2-m=m\left(m-1\right)\)

\(\left(m^2-4m+3\right)x< m^2-m\Leftrightarrow\left(m-1\right)\left(m-3\right)x< m\left(m-1\right)\)(1)

+) TH1: (m-1)(m-3)=0 <=> \(\orbr{\begin{cases}m-1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)

Với m=1 thay vào (1): 0x<0 Vô lí

=> m=1, bất phương trình (1) vô nghiệm

Với m=3 thay vào (1), ta có: 0x<6 ( luôn đúng)

=> m=3, bất phương trình (1) có nghiệm với mọi x

+)TH2: \(\left(m-1\right).\left(m-3\right)>0\Leftrightarrow\orbr{\begin{cases}m>1\\m< 3\end{cases}}\)

(1) có nghiệm : \(x< \frac{m}{m-3}\)

+) TH3: 1<m<3

(1) có nghiệm :: \(x>\frac{m}{m-3}\)

Từ các trường hợp trên: Để bất phương trình có nghiệm đúng với mọi x : m=3

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
MP
Xem chi tiết
MP
Xem chi tiết
me
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
SC
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết