(x+3)x(2y+1)=5
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
Tính A+B,A-B
Helpp..
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A+B=\dfrac{67}{60}x^2y^3+\left(x^6y^3\right)\left(\dfrac{1}{4}x^2y^4z^2\right)\)
\(=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
Tính giá trị của biểu thức
A=
\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
Tính A+B,A-B
cần gấp ạ..
\(A=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\)
bth B đâu bạn ?
a) (x^2-2x+3).(1/2x-5) b) (x^2y^2 -1/3xy+2y).(x-2y)
\(a,\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\\ =x^2.\dfrac{1}{2}x-5x^2-2x.\dfrac{1}{2}x+2x.5+3.\dfrac{1}{2}x-15\\ =\dfrac{1}{2}x^3-5x^2-x^2+10x+\dfrac{3}{2}x-15\\ =\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
\(b,\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\\ =x^3y-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
a) \(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
\(=\dfrac{1}{2}x^3-5x^2-x+10x+\dfrac{3}{2}x-15\)
\(=\dfrac{1}{2}x^3-5x^2+\dfrac{48}{5}x-15\)
b) \(\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\)
\(=x^3y^2-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
Tính
-x^2y^2 + 1/3 x^2y^2 + 5/12 x^2y^2
\(\begin{cases}x^3+3xy^2+x^2+y^2+x+1=2y^3+3x^2y+xy+2y\\x\left(2y-1\right)-5x-2y+5=0\end{cases}\)
a) \(x^6+x^2y^5+xy^6+x^2y^5-xy^6\)
b) \(\dfrac{1}{2}x^2y^3-x^2y^3+3x^2y^2z^2-z^4-3x^2y^2z^2\)
a) x6+x2y5+xy6+x2y5-xy6
= x6+(x2y5+x2y5)+(xy6-xy6)
= x6+2x2y5
b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2
= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4
= -\(\dfrac{1}{2}\)x2y3-z4
M)(x^2-2xy+y^2)(x-y) N)-(x-y)(x^2+xy-1) Ờ)-(x^2-2y)(x+y^2-1) P)(1/2x-1)(2x-3) Q)(x-1/2y)(x-1/2y) R)(x^2-2x+3)(1/2x-5)
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
tim 2 so tu nhien x va y biet 1) (2x+1)x(y-3)=10 2) (x+1)x(2y-5)=143 3) (3x-2)x(2y-3)=1 4) (x+1)x(2y-1)=12
bạn viết lại đi sai đề hay sao ý
Giải hệ phương trình:\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)
\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy\left(2y^3-x^3\right)=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\left(1\right)\\x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\)
Dễ thấy y = 0 không phải là nghiệm của hệ
Ta đặt \(x=ty\) thì ta có
\(\left(ty\right)^5+\left(ty\right)^3y^2-\left(ty\right)^2y^3+2tyy^4-\left(ty\right)^4y=2y^5\)
\(\Leftrightarrow t^5-t^4+t^3-t^2+2t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^4+t^2+2\right)=0\)
Vì \(t^4+t^2+2>0\)
\(\Rightarrow t=1\)
\(\Rightarrow x=y\)
Thế vô (1) ta được
\(2x^3-x^3=1\)
\(\Leftrightarrow x=y=1\)