Chứng minh rằng:(a+b)3 - (a+6)×(a2+12)+64=0 với mọi a
Chứng minh rằng(a+2)^3-(a+6)(a^2+12)+64=0, với mọi a
Ta có (a+2)3-(a+6)(a2+12)+64=a3+6a2+12a+8-a3-12a-6a2-72+64=0(đpcm)
\(\left(a+2^3\right)-\left(a+6\right).\left(a^2+12\right)+64=0\)
\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\)
\(\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)
\(\Leftrightarrow a^3+6a^2+11a+64=64\)
\(\Leftrightarrow a^3+6a^2+11a^2=0\)
\(\Leftrightarrow a.\left(a^2+6a+11\right)=0\)
\(\Leftrightarrow a.\left[\left(a^2+2.a.3+9\right)+2\right]=0\)
\(\Leftrightarrow a.\left[\left(a+3\right)^2+2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\\left(a+3\right)^2+2=0\left(\text{Vô lí}\right)\end{matrix}\right.\)
\(\Rightarrow a=0\)
\(\Rightarrow\) Đpcm.
Chứng minh rằng(a+2)^3-(a+6)(a^2+12)+64=0, với mọi a
Có sai đề không bạn
Biểu thức trên có nghiệm mà
Chứng minh rằng : (a^2)^3-(a+6)×(a^2+12)+64=0 với mọi giá trị của a
Chứng minh rằng
(a+23)-(a+6)(a2+12)+64=0 với mọi a
\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)
\(\Leftrightarrow a^3+6a^2+11a+64=64\Leftrightarrow a^3+6a^2+11a=0\Leftrightarrow a\left(a^2+6a+11\right)=0\)
\(\Leftrightarrow a\left[\left(a^2+2.a.3+9\right)+2\right]=0\Leftrightarrow a\left[\left(a+3\right)^2+2\right]=0\Leftrightarrow\orbr{\begin{cases}a=0\\\left(a+3\right)^2+2=0\left(V\text{ô}l\text{í}\right)\end{cases}\Rightarrow a=0}\)
hình như sai đề hay sao ý, có nghiệm mà =)))))
1/Tìm x biết: x^3+6x^2+12x+8=0
2/Chứng minh rằng(a+2)^3-(a+6)(a^2+12)+64=0, với mọi a
1/ x^3+6x^2+12x+8=0
(x+2)^3=0
x+2=0
x=-2
Vậy x=-2
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
mọi người giúp mih với:
đặt a= ∛2-√3 + ∛2+√3. chứng minh C= 64/ (a2-3)3-3a là số nguyên
\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
=>\(a^3=2-\sqrt{3}+2+\sqrt{3}+3\cdot\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\right)\cdot\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
=>\(a^3=4+3a\)
=>\(a^3-3a=4\)
\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\left(a^2-3\right)^3\)
\(=\left(\dfrac{4}{a}\right)^3=\dfrac{64}{a^3}\)
\(C=\dfrac{64}{\left(a^2-3\right)^3}-3a\)
\(=64:\dfrac{64}{a^3}-3a\)
=a^3-3a
=4
Chứng minh rằng với mọi số nguyên a thì a2 (a + 1) + 2a (a + 1) chia hết cho 6
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6