cho S=5+52+53+54+55+56+...+52004. Chứng minh S chia hết cho 126 và chia hết cho 65.
cho S =5+52+53+54+55+56+...+52012
chứng tỏ S chia hết cho 65
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
\(S=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+...+5^{2009}\left(1+5+5^2+5^3\right)\)
\(=156\left(5+5^5+...+5^{2009}\right)\)
\(=780\cdot\left(1+5^4+...+5^{2008}\right)⋮65\)
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
cho S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52016. chứng tỏ rằng S chia hết cho 65
mn giúp mk nhé!!
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
=1872643+8712648-127649817
=9873264+98293:8726
chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Cho S=5+5^2+5^3+.....+5^2004. Chứng minh S chia hết cho 126 và chia hết cho 65
Số số hạng của dãy S là :(2004-1):1+1=2004
Ta chia 2004 số hạng thành 501 nhóm mỗi nhóm 4 số và đătj thừa số chung như sau:
(5+5^2+5^3+5^4)+........+(5^2001+5^2002+5^2003+5^2004)
=> (5+5^2+5^3+5^4)+........+5^2001*(5+5^2+5^3+5^4)
=>780+..........+5^2001*780
=780*(1+.........+5^2001)
Vì 780 chia hết cho 65
vậy S chia hết cho 65
Cho S = 5+52+53+...+52004.Chứng minh S chia hết cho 126 và chia hết cho 65
mình làm dc rồi , ko cần ai trả lời đâu nha
Cho s=5+52+53+...+52004.Chứng minh S chia hết cho 126 và chia hết cho 65
\(S=\left(5+5^3\right)+5\left(5+5^3\right)+............+5^{2001}\left(5+5^3\right)\)
\(\Rightarrow S=130+5.130+....+5^{2001}.130\)
\(\Rightarrow S=65\left(2+2.5+.....+2.5^{2001}\right)\)
=>s chia hết cho 65
Vậy S chia hết cho 65
= 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65