S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
\(S=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+...+5^{2009}\left(1+5+5^2+5^3\right)\)
\(=156\left(5+5^5+...+5^{2009}\right)\)
\(=780\cdot\left(1+5^4+...+5^{2008}\right)⋮65\)
Để chứng tỏ S chia hết cho 65 cần chứng tỏ S chia hết cho 5 và 13
+) Chứng minh S chia hết cho 5
Ta có:
5 chia hết cho 5
52 chia hết cho 5
53 chia hết cho 5
......................
52012 chia hết cho 5
=> S = 5 + 52 + 53 + .............. + 52012 chia hết cho 5 (1)
+) Chứng minh S chia hết cho 13
Tổng S có 2012 số, nhóm 4 số vào 1 nhóm thì vừa hết
Ta có:
S = (5 + 52 + 53 + 54) + (56 + 57 + 58 + 59) + ................. + (52009 + 52010 + 52011 + 52012)
= 5(1 + 5 + 52 + 53) + 56(1 + 5 + 52 + 53) + .................. + 52009(1 + 5 + 52 + 53)
= (1 + 5 + 52 + 53)(5 + 56 + .............. + 52009)
= 156.(5 + 56 + ................. + 52009) chia hết cho 13 (2)
Từ (1) và (2) => S chia hết cho 5 và 13
Mà ƯCLN(5,13) = 1
=> S chia hết cho 5.13 = 65