Bài1 : tính
a) \(\left(3x+\frac{5}{2}y\right)^2\);b)\(\left(x^2-\frac{3}{2}\right)^2\)
c) \(\frac{1}{4}-16x^2y^2\) ;d)\(\left(\frac{1}{5}x-2y\right)\left(2y+\frac{1}{5}x\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính
a) \(\left( {\frac{4}{5} - 1} \right):\frac{3}{5} - \frac{2}{3}.0,5\)
b) \(1 - {\left( {\frac{5}{9} - \frac{2}{3}} \right)^2}:\frac{4}{{27}}\)
c)\(\left[ {\left( {\frac{3}{8} - \frac{5}{{12}}} \right).6 + \frac{1}{3}} \right].4\)
d) \(0,8:\left\{ {0,2 - 7.\left[ {\frac{1}{6} + \left( {\frac{5}{{21}} - \frac{5}{{14}}} \right)} \right]} \right\}\)
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
Tính
a) \(\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3};\)
b) \({\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}.\)
a) `1/9-0,3. 5/9+1/3`
`=1/9-3/10 . 5/9+1/3`
`=1/9-15/90+1/3`
`=1/9-1/6+1/3`
`=2/18-3/18+6/18`
`=5/18`
b) `(-2/3)^2+1/6-(-0,5)^3`
`=4/9+1/6-(-0,125)`
`=4/9+1/6+0,125`
`=4/9+1/6+1/8`
`=32/72+12/72+9/72`
`=53/72`
hệ phương trình
1, \(\left\{{}\begin{matrix}3x=6\\x-3y=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}3x+5y=15\\2y=-7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)+11\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{4}{5}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{5}\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)
có ái đó giúp mình với mình đang cần gấp
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
\(TínhA=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\left(1\right)\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\left(2\right)\end{cases}}\)
ĐKXĐ: \(|x|\ge|y|,y\ne0,y\ne5.\)Ta có:
Với \(x+\sqrt{x^2-y^2}=0\)thế vào (1) ta được \(x=0\). Khi đó thay x=0 vào (2):
\(0=\frac{5}{6\left(5-y\right)}\)(vô lí)
\(\Rightarrow x+\sqrt{x^2-y^2}\ne0\), Ta có:
\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{\left(x-\sqrt{x^2-y^2}\right)\left(x+\sqrt{x^2-y^2}\right)}=\frac{9x}{5}\\6x\left(5-y\right)=\left(5+3x\right)y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{y^2}=\frac{9x}{5}\left(3\right)\\30x=5y+9xy\left(4\right)\end{cases}}\)
Ta thấy Vế trái của phương trình (3) lớn hơn 0 => \(\frac{9x}{5}>0\Rightarrow x>0\)
Khi đó (4) \(\Leftrightarrow y=\frac{30x}{5+9x}>0\)
Vậy \(x,y>0\), Tiếp tục biến đổi từ (3) và (4) ta có hệ:
\(\hept{\begin{cases}\frac{x^2+2x\sqrt{x^2-y^2}+x^2-y^2}{y^2}=\frac{9x}{5}\\\left(9x+5\right)y=30x\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{2x^2}{y^2}+\frac{2x}{y}.\sqrt{\frac{x^2-y^2}{y^2}}-1=\frac{9x}{5}\\9x+5=30\frac{x}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=\frac{9x+5}{5}\\\frac{9x+5}{5}=6\frac{x}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=6\frac{x}{y}\left(5\right).\\9x+5=30\frac{x}{y}\left(6\right)\end{cases}}\)
Đặt \(\frac{x}{y}=a>0\)ta có;
\(\left(5\right)\Leftrightarrow2a^2+2a\sqrt{a^2-1}=6a\)\(\Leftrightarrow a^2+a\sqrt{a^2-1}-3a=0\Leftrightarrow a+\sqrt{a^2-1}-3=0\)
\(\Leftrightarrow\sqrt{a^2-1}=3-a\Leftrightarrow a^2-1=9-6a+a^2\Leftrightarrow6a=10\Leftrightarrow a=\frac{5}{3}\)
\(\Rightarrow\frac{x}{y}=\frac{5}{3}\)Thế vào (6) ta được \(9x+5=30.\frac{5}{3}\Leftrightarrow x=5\left(TMĐK\right).\)
\(\Rightarrow y=\frac{3.5}{5}=3\left(TMĐK\right).\)
Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(5;3\right).\)
Mong các bạn góp ý cho bài của mình để lần sau mình rút kinh nghiệm .cảm ơn
1.tính
a) (3x+1).(3x-1)
b) \(\left(x^2+\frac{2}{5}y\right).\left(x^2-\frac{2}{5}y\right)\)
a. (3x + 1)(3x - 1)
= (3x)2 - 12
= 9x2 - 1
b. \(\left(x^2+\frac{2}{5}y\right)\left(x^2-\frac{2}{5}y\right)\)
= \(\left(x^2\right)^2-\left(\frac{2}{5}y\right)^2\)
= \(x^4-\frac{4}{25}y^2\)
Mk nhanh nhất!
\(b.\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)
=>\(x=\frac{1}{6};y=\frac{-6}{5}\)
b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
Ta lại có:
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)
=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)
Bài 2: Tìm x, y biết :
a) \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)
b) \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)